Advertisement

Applied Physics A

, Volume 106, Issue 4, pp 773–778 | Cite as

Plasmonic resonance enhancement of single gold nanorod in two-photon photopolymerization for fabrication of polymer/metal nanocomposites

  • Kyoko Masui
  • Satoru Shoji
  • Feng Jin
  • Xuan-Ming Duan
  • Satoshi Kawata
Rapid communication

Abstract

We investigated the plasmonic resonance enhanced two-photon photopolymerization (PETPP) using the isolated chemical synthesized gold nanorods for fabrication of polymer/metal nanocomposites. The isolated gold nanorods with the plasmonic resonance band around 750 nm covered by photoresist were irradiated by a femtosecond laser with the wavelength of 780 nm. The PETPP trigged by the plasmonic resonance enhancement of gold nanorods was localized only in the distance smaller than 30 nm from the surface of gold nanorods, which matched the distance of plasmonic resonant enhanced field of the gold nanorod. The shapes of obtained polymer/gold nanocomposites were changed from the “dumbbell” to the “ellipsoid” with the increase of laser irradiating intensity used for PETPP. This study would provide a potential method for fabricating the plasmonic nanomaterials and nanostructures of polymer/metal nanocomposites, which could be expected to be applied in the emerging fields such as nanophotonics, nanobiosensor, nanolithography.

Keywords

Plasmonic Resonance Gold Nanorods Metallic Nanostructures Plasmonic Resonance Wavelength Polymer Layer Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is supported by the NSFC (Grant Nos. 91123032, 50973126, 61077028), 973 (2010CB934103) and ICP (2010DFA01180) Projects of MOST, China. This research is also financially supported by Iketani Science and Technology Foundation, and by KAKENHI Grant-in-Aid for Young Scientists (Nos. 21686010, 19810012), MEXT, Japan.

References

  1. 1.
    B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.Y.S. Lee, D.M. Maughon, J. Qin, H. Röckel, M. Rumi, X.L. Wu, S.R. Marder, J.W. Perry, Nature 398, 51 (1999) ADSCrossRefGoogle Scholar
  2. 2.
    S. Kawata, H.B. Sun, T. Tanaka, K. Takada, Nature 412, 697 (2001) ADSCrossRefGoogle Scholar
  3. 3.
    L.J. Li, R.R. Gattass, E. Gershgoren, H. Hwang, J.T. Fourkas, Science 324, 910 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    H.-B. Sun, S. Matsuo, H. Misawa, Appl. Phys. Lett. 74, 786 (1999) ADSCrossRefGoogle Scholar
  5. 5.
    K. Kaneko, H.-B. Sun, X.-M. Duan, S. Kawata, Appl. Phys. Lett. 83, 2091 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    X.-Z. Dong, Q. Ya, X.-Z. Sheng, Z.-Y. Li, Z.-S. Zhao, X.-M. Duan, Appl. Phys. Lett. 92, 231103 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    Q. Ya, W.Q. Chen, X.Z. Dong, T. Rodgers, S. Nakanishi, S. Shoji, X.M. Duan, S. Kawata, Appl. Phys. A 93, 393 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    S. Maruo, H. Inoue, Appl. Phys. Lett. 89, 144101 (2006) ADSCrossRefGoogle Scholar
  9. 9.
    X.-Z. Dong, Z.-S. Zhao, X.-M. Duan, Appl. Phys. Lett. 91, 124103 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    Z. Xiong, M.-L. Zheng, X.-Z. Dong, W.-Q. Chen, F. Jin, Z.-S. Zhao, X.-M. Duan, Soft Matter 7, 10353 (2011) CrossRefADSGoogle Scholar
  11. 11.
    C.-F. Li, X.-Z. Dong, F. Jin, W. Jin, W.-Q. Chen, Z.-S. Zhao, X.-M. Duan, Appl. Phys. A 89, 145 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    Z. Xiong, X.Z. Dong, W.Q. Chen, X.M. Duan, Appl. Phys. A 93, 447 (2008) CrossRefGoogle Scholar
  13. 13.
    X.-M. Duan, H.-B. Sun, K. Kaneko, S. Kawata, Thin Solid Films 453, 518 (2004) ADSCrossRefGoogle Scholar
  14. 14.
    Z.-B. Sun, X.-Z. Dong, S. Nakanishi, W.-Q. Chen, X.-M. Duan, S. Kawata, Appl. Phys. A 86, 427 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    Z.-B. Sun, X.-Z. Dong, W.-Q. Chen, S. Nakanishi, X.-M. Duan, S. Kawata, Adv. Mater. 20, 914 (2008) CrossRefGoogle Scholar
  16. 16.
    W.-K. Wang, Z.-B. Sun, M.-L. Zheng, X.-Z. Dong, Z.-S. Zhao, X.-M. Duan, J. Phys. Chem. C 115, 11275 (2011) Google Scholar
  17. 17.
    D.-F. Tan, Y. Li, F.-J. Qi, H. Yang, Q.-H. Gong, X.-Z. Dong, X.-M. Duan, Appl. Phys. Lett. 90, 071106 (2007) ADSCrossRefGoogle Scholar
  18. 18.
    J.-F. Xing, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, N. Takeyasu, T. Tanaka, S. Kawata, Appl. Phys. Lett. 90, 131106 (2007) ADSCrossRefGoogle Scholar
  19. 19.
    X.-Z. Dong, Z.-S. Zhao, X.-M. Duan, Appl. Phys. Lett. 92, 091113 (2008) ADSCrossRefGoogle Scholar
  20. 20.
    Y.-Y. Cao, N. Takeyasu, T. Tanaka, X.-M. Duan, S. Kawata, Small 5, 1144 (2009) Google Scholar
  21. 21.
    Y.-Y. Cao, X.-Z. Dong, N. Takeyasu, T. Tanaka, Z.-S. Zhao, X.-M. Duan, S. Kawata, Appl. Phys. A 96, 453 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    C.H. Lien, W.S. Kuo, K.C. Cho, C.Y. Lin, Y.D. Su, L.L.H. Huang, P.J. Campagnola, C.Y. Dong, S.J. Chen, Opt. Express 19, 6260 (2010) CrossRefGoogle Scholar
  23. 23.
    N. Murazawa, K. Ueno, V. Mizeikis, S. Juodkazis, H. Misawa, J. Phys. Chem. C 113, 1147 (2009) CrossRefGoogle Scholar
  24. 24.
    A.D. Hoogh, B. Hommersom, A.F. Koenderink, Opt. Express 19, 11405 (2011) ADSCrossRefGoogle Scholar
  25. 25.
    A. Sundaramurthy, P.J. Schuck, N.R. Conley, D.P. Fromm, G.S. Kino, W.E. Moerner, Nano Lett. 6, 355 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    K. Ueno, S. Juodkazis, T. Shibuya, V. Mizetkis, Y. Yokota, H. Misawa, J. Phys. Chem. C 113, 11720 (2009) CrossRefGoogle Scholar
  27. 27.
    W.S. Kuo, C.H. Lien, K.C. Cho, C.Y. Chang, C.Y. Lin, L.L.H. Huang, P.J. Campagnola, C.Y. Dong, S.J. Chen, Opt. Express 18, 27550 (2010) ADSCrossRefGoogle Scholar
  28. 28.
    S. Nah, L.J. Li, R. Liu, J.J. Hao, S.B. Lee, J.T. Fourkas, J. Phys. Chem. C 114, 7774 (2010) CrossRefGoogle Scholar
  29. 29.
    K. Masui, S. Shoji, K. Asaba, T.C. Rodgers, F. Jin, X.M. Duan, S. Kawata, Opt. Express 19, 22786 (2011) ADSCrossRefGoogle Scholar
  30. 30.
    S. Nah, L. Li, J.T. Fourkas, J. Phys. Chem. A 113, 4416 (2009) CrossRefGoogle Scholar
  31. 31.
    E.J. Zeman, G.C. Schatz, J. Phys. Chem. 91, 634 (1987) CrossRefGoogle Scholar
  32. 32.
    N.R. Jana, L. Gearheart, C.J. Murphy, J. Phys. Chem. B 105, 4065 (2001) CrossRefGoogle Scholar
  33. 33.
    J. Yang, J.C. Wu, Y.C. Wu, J.K. Wang, C.C. Chen, Chem. Phys. Lett. 416, 215 (2005) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Kyoko Masui
    • 1
    • 2
    • 3
  • Satoru Shoji
    • 2
  • Feng Jin
    • 1
  • Xuan-Ming Duan
    • 1
  • Satoshi Kawata
    • 2
    • 4
  1. 1.Laboratory of Organic NanoPhotonics and Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and ChemistryChinese Academy of SciencesBeijingChina
  2. 2.Department of Applied PhysicsOsaka UniversityOsakaJapan
  3. 3.The Graduation School of Chinese Academy of SciencesBeijingChina
  4. 4.Nanophotonics LaboratoryRIKENSaitamaJapan

Personalised recommendations