Advertisement

Applied Physics A

, Volume 107, Issue 2, pp 385–392 | Cite as

Highly transparent ITO thin films on photosensitive glass: sol–gel synthesis, structure, morphology and optical properties

  • László Kőrösi
  • Szilvia Papp
  • Szabolcs Beke
  • Béla Pécz
  • Róbert Horváth
  • Péter Petrik
  • Emil Agócs
  • Imre Dékány
Article

Abstract

Conductive and highly transparent indium tin oxide (ITO) thin films were prepared on photosensitive glass substrates by the combination of sol–gel and spin-coating techniques. First, the substrates were coated with amorphous Sn-doped indium hydroxide, and these amorphous films were then calcined at 550C to produce crystalline and electrically conductive ITO layers. The resulting thin films were characterized by means of scanning electron microscopy, UV-Vis spectroscopy, X-ray photoelectron spectroscopy and spectroscopic ellipsometry. The measurements revealed that the ITO films were composed of spherical crystallites around 20 nm in size with mainly cubic crystal structure. The ITO films acted as antireflection coatings increasing the transparency of the coated substrates compared to that of the bare supports. The developed ITO films with a thickness of ∼170–330 nm were highly transparent in the visible spectrum with sheet resistances of 4.0–13.7 kΩ/sq. By coating photosensitive glass with ITO films, our results open up new perspectives in micro- and nano-technology, for example in fabricating conductive and highly transparent 3D microreactors.

Keywords

Sheet Resistance Photosensitive Glass Atomic Sensitivity Factor Indium Hydroxide Foturan Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors thank Dr. Aiko Nakao (Cooperative Support Team, Riken—Advanced Science Institute, Wako, Saitama, Japan) for the assistance on XPS measurements. The authors also thank the Hungarian National Scientific Fund (OTKA) K81842 and PD 73084 for the financial support.

Supplementary material

339_2012_6765_MOESM1_ESM.tif (341 kb)
SEM picture of ITO-A thin film calcined at 550°C (TIF 341 kB)
339_2012_6765_MOESM2_ESM.tif (4.2 mb)
UV-Vis transmittance spectra of ITH-NA thin films (dried at 25°C) with different numbers of layers on Foturan glass (TIF 4.2 MB)

References

  1. 1.
    C.G. Granqvist, A. Hultåker, Thin Solid Films 411, 1 (2002) ADSCrossRefGoogle Scholar
  2. 2.
    C. Guillén, J. Herrero, J. Appl. Phys. 101, 073514 (2007) ADSCrossRefGoogle Scholar
  3. 3.
    T. Ogi, F. Iskandar, Y. Itoh, K. Okuyama, J. Nanopart. Res. 8, 343 (2006) CrossRefGoogle Scholar
  4. 4.
    K. Maki, N. Komiya, A. Suzuki, Thin Solid Films 445, 224 (2003) ADSCrossRefGoogle Scholar
  5. 5.
    J. George, C.S. Menon, Surf. Coat. Technol. 132, 45 (2000) CrossRefGoogle Scholar
  6. 6.
    H. Mbarek, M. Saadoun, B. Bessais, Mater. Sci. Eng. C 26, 500 (2006) CrossRefGoogle Scholar
  7. 7.
    J.H. Kim, K.A. Jeon, G.H. Kim, S.Y. Lee, Appl. Surf. Sci. 252, 4834 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    S.R. Ramanan, Thin Solid Films 389, 207 (2001) ADSCrossRefGoogle Scholar
  9. 9.
    A.C. Dippel, T. Schneller, P. Gerber, R. Waser, Thin Solid Films 515, 3797 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    L. Kőrösi, S. Papp, I. Dékány, Thin Solid Films 519, 3113 (2011) CrossRefGoogle Scholar
  11. 11.
    Y. Djaoued, V.H. Phong, S. Badilescu, P.V. Ashrit, F.E. Girouard, V.V. Truong, Thin Solid Films 293, 108 (1997) ADSCrossRefGoogle Scholar
  12. 12.
    C. Goebbert, R. Nonninger, M.A. Aegerter, H. Schmidt, Thin Solid Films 351, 79 (1999) ADSCrossRefGoogle Scholar
  13. 13.
    T. Kanbara, M. Nagasaka, T. Yamamoto, Chem. Mater. 2, 643 (1990) CrossRefGoogle Scholar
  14. 14.
    A. Solieman, S. Alamri, M. Aegerter, J. Nanopart. Res. 12, 2381 (2010) CrossRefGoogle Scholar
  15. 15.
    E. Hammarberg, A. Prodi-Schwab, C. Feldmann, Thin Solid Films 516, 7437 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    J. Ba, D.F. Rohlfing, A. Feldhoff, T. Brezesinski, I. Djerdj, M. Wark, M. Niederberger, Chem. Mater. 18, 2848 (2006) CrossRefGoogle Scholar
  17. 17.
    S. Beke, L. Kőrösi, K. Sugioka, K. Midorikawa, I. Dékány, Appl. Phys. A 102, 265 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, K. Shihoyama, Opt. Lett. 28, 1144 (2003) ADSCrossRefGoogle Scholar
  19. 19.
    M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, K. Midorikawa, Appl. Phys. A 76, 857 (2003) ADSCrossRefGoogle Scholar
  20. 20.
    Y. Cheng, H.L. Tsai, K. Sugioka, K. Midorikawa, Appl. Phys. A 85, 11–14 (2006) ADSCrossRefGoogle Scholar
  21. 21.
    M. Fried, T. Lohner, P. Petrik, in H.S. Nalwa (ed.) Handbook of Surfaces and Interfaces of Materials (Academic Press, San Diego, 2001) Google Scholar
  22. 22.
    B.C. Kim, J.Y. Kim, D.D. Lee, J.O. Lim, J.S. Huh, Sens. Actuator B 89, 180 (2003) CrossRefGoogle Scholar
  23. 23.
    L. Kőrösi, S. Papp, S. Beke, A. Oszkó, I. Dékány, Microporous Mesoporous Mater. 134, 79 (2010) CrossRefGoogle Scholar
  24. 24.
    M.K. Jeon, M. Kang, Mater. Lett. 62, 676 (2008) CrossRefGoogle Scholar
  25. 25.
    X.S. Peng, G.W. Meng, X.F. Wang, Y.W. Wang, J. Zhang, X. Liu, L.D. Zhang, Chem. Mater. 14, 4490 (2002) CrossRefGoogle Scholar
  26. 26.
    L. Kőrösi, A. Oszkó, G. Galbács, A. Richardt, V. Zöllmer, I. Dékány, Appl. Catal. B 77, 175 (2007) CrossRefGoogle Scholar
  27. 27.
    R.A. Synowicki, Thin Solid Films 394, 313 (1998) Google Scholar
  28. 28.
    M. Losurdo, M. Giangregorio, P. Capezzuto, G. Bruno, R. De Rosa, F. Roca, C. Summonte, J. Pla, R. Rizzoli, J. Vac. Sci. Technol. A 20, 37 (2002) ADSCrossRefGoogle Scholar
  29. 29.
    J.A. Dobrowolski, L. Li, J.N. Hilfiker, Appl. Opt. 38, 4891 (1999) ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • László Kőrösi
    • 1
  • Szilvia Papp
    • 1
  • Szabolcs Beke
    • 2
  • Béla Pécz
    • 3
  • Róbert Horváth
    • 3
  • Péter Petrik
    • 3
  • Emil Agócs
    • 3
  • Imre Dékány
    • 1
  1. 1.Supramolecular and Nanostructured Materials Research Group of the Hungarian Academy of SciencesUniversity of SzegedSzegedHungary
  2. 2.Department of NanophysicsItalian Institute of TechnologyGenovaItaly
  3. 3.Research Institute for Technical Physics and Materials ScienceBudapestHungary

Personalised recommendations