Characterization of excimer laser ablation generated pepsin particles using multi-wavelength photoacoustic instrument

Abstract

Preparation of organic thin layers on various special substrates using the pulsed laser deposition (PLD) technique is an important task from the point of view of bioengineering and biosensor technologies. Earlier studies demonstrated that particle ejection starts during the ablating laser pulse resulting in significant shielding effects which can influence the real fluence on the target surface and consequently the efficiency of layer preparation. In this study, we introduce a photoacoustic absorption measurement technique for in-situ characterization of ablated particles during PLD experiments. A KrF excimer laser beam (λ=248 nm, FWHM=18 ns) was focused onto pepsin targets in a PLD chamber; the applied laser fluences were 440 and 660 mJ/cm2. We determined the wavelength dependence of optical absorption and mass specific absorption coefficient of laser ablation generated pepsin aerosols in the UV–VIS–NIR range. On the basis of our measurements, we calculated the absorbance at the ablating laser wavelength, too. We demonstrated that when the laser ablation generated pepsin aerosols spread through the whole PLD chamber the effect of absorptivity is negligible for the subsequent pulses. However, the interaction of the laser pulse and the just formed particle cloud generated by the same pulse is more significant.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    G. Kecskeméti, T. Smausz, N. Kresz, Zs. Tóth, B. Hopp, D. Chrisey, O. Berkesi, Appl. Surf. Sci. 253, 1185 (2006)

    ADS  Article  Google Scholar 

  2. 2.

    B. Hopp, T. Smausz, G. Kecskeméti, A. Klini, Zs. Bor, Appl. Surf. Sci. 253, 7806 (2007)

    ADS  Article  Google Scholar 

  3. 3.

    G. Kecskeméti, N. Kresz, T. Smausz, B. Hopp, A. Nógrádi, Appl. Surf. Sci. 247, 83 (2005)

    ADS  Article  Google Scholar 

  4. 4.

    E. György, F. Sima, I.N. Mihailescu, T. Smausz, B. Hopp, D. Predoi, L.E. Sima, S.M. Petrescu, Mater. Sci. Eng. C 30, 537 (2010)

    Article  Google Scholar 

  5. 5.

    P.K. Wu, B.R. Ringeisen, J. Callahan, M. Brooks, D.M. Bubb, H.D. Wu, A. Piqué, B. Spargo, R.A. McGill, D.B. Chrisey, Thin Solid Films 398–399, 607 (2001)

    Article  Google Scholar 

  6. 6.

    T. Xie, A. Wang, L. Huang, H. Li, Z. Chen, Q. Wang, X. Yin, Afr. J. Biotechnol. 8, 4724 (2009)

    Google Scholar 

  7. 7.

    E. György, A. Pérez Del Pino, G. Sauthier, A. Figueras, J. Appl. Phys. 106(11), 114702 (2009). doi:10.1063/1.3266670

    ADS  Article  Google Scholar 

  8. 8.

    M.A. Hernandez-Perez, C. Garapon, C. Champeaux, Appl. Surf. Sci. 208, 658 (2003)

    ADS  Article  Google Scholar 

  9. 9.

    S. Nagare, J. Sagawa, M. Senna, J. Nanopart. Res. 8, 37 (2006)

    Article  Google Scholar 

  10. 10.

    Y. Tsuboi, M. Goto, A. Itaya, J. Appl. Phys. 89, 7917 (2001)

    ADS  Article  Google Scholar 

  11. 11.

    Y. Tsuboi, N. Kimoto, M. Kabeshita, J. Photochem. Photobiol. 45, 209 (2001)

    Article  Google Scholar 

  12. 12.

    S.I. Anisimov, B.S. Luk’yanchuk, A. Luches, Appl. Surf. Sci. 96–98, 24 (1996)

    Article  Google Scholar 

  13. 13.

    K. Pathak, A. Povitsky, Appl. Surf. Sci. 253, 6359 (2007)

    ADS  Article  Google Scholar 

  14. 14.

    A. Bogaerts, Z. Chen, D. Autrique, Spectrochim. Acta B 63, 746 (2008)

    ADS  Article  Google Scholar 

  15. 15.

    M. Schnaiter, M. Gimmler, I. Llamas, C. Linke, C. Jäger, H. Mutshke, Atmos. Chem. Phys. 6, 2981 (2006)

    ADS  Article  Google Scholar 

  16. 16.

    H. Moosmüller, R.K. Chakrabarty, P.W. Arnott, J. Quant. Spectrosc. Radiat. Transf. 110, 844 (2009)

    ADS  Article  Google Scholar 

  17. 17.

    J. Sandradewi, A.S.H. Prévot, E. Weingartner, R. Schmidhauser, M. Gysel, U. Baltensperger, Atmos. Environ. 42, 101 (2008)

    Article  Google Scholar 

  18. 18.

    M.O. Andreae, A. Gelencsér, Atmos. Chem. Phys. 6, 3131 (2006)

    ADS  Article  Google Scholar 

  19. 19.

    A. Virkkula, T. Mäkelä, T. Yli-Tuomi, A. Hirsikko, I.K. Koponen, K. Hämerl, R. Hillamo, J. Air Waste Manage. 57, 1214 (2007)

    Google Scholar 

  20. 20.

    M.O. Andreae, Nature 409, 671 (2001)

    ADS  Article  Google Scholar 

  21. 21.

    D.A. Lack, E.R. Lovejoy, T. Baynard, A. Pettersson, A.R. Ravinshankara, Aerosol Sci. Technol. 40, 697 (2006)

    Article  Google Scholar 

  22. 22.

    H.A. Beck, R. Niesner, C. Haisch, Anal. Bioanal. Chem. 375, 1136 (2003)

    Google Scholar 

  23. 23.

    W.P. Arnott, H. Moosmüller, C.F. Rogers, T. Jin, R. Bruch, Atmos. Environ. 33, 2845 (1999)

    Article  Google Scholar 

  24. 24.

    K. Lewis, W.P. Arnott, H. Moosmüller, C.E. Wold, J. Geophys. Res. 113, D16203 (2008). doi:10.1029/2007JD009699

    ADS  Article  Google Scholar 

  25. 25.

    T. Ajtai, Á. Filep, M. Schnaiter, C. Linke, M. Vragel, Z. Bozóki, G. Szabó, T. Leisner, J. Aerosol Sci. 41, 1020 (2010)

    Article  Google Scholar 

  26. 26.

    T. Ajtai, Á. Filep, G. Kecskeméti, B. Hopp, Z. Bozóki, G. Szabó, Appl. Phys. A (2010). doi:10.1007/s00339-010-6068-3

    Google Scholar 

  27. 27.

    S. Voight, J. Orphal, J.P. Burrows, J. Photochem. Photobiol. A 149, 1 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Office for National Research and Technology (NKTH) and the OTKA Foundation from the Hungarian Research and Technology Innovation Fund (project numbers CNK 78549 and K 67818). The authors gratefully acknowledge the financial support of the Hungarian National Office for Research and Technology (JEDLIK_AEROS_EU) and the EUSAAR (European Supersites for Atmospheric Aerosol Research) project.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. Hopp.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hopp, B., Kecskeméti, G., Smausz, T. et al. Characterization of excimer laser ablation generated pepsin particles using multi-wavelength photoacoustic instrument. Appl. Phys. A 107, 429–435 (2012). https://doi.org/10.1007/s00339-012-6759-z

Download citation

Keywords

  • Pulse Laser Deposition
  • Excimer Laser
  • Ablate Laser Pulse
  • Particle Cloud
  • Aerosol Cloud