Optically tunable plasmonic color filters


We fabricated sub-wavelength patterned gold plasmonic nanostructures on a quartz substrate through the focused ion beam (FIB) technique. The perforated gold film demonstrated optical transmission peaks in the visible range, which therefore can be used as a plasmonic color filter. Furthermore, by integrating a layer of photoresponsive liquid crystals (LCs) with the gold nanostructure to form a hybrid system, we observed a red-shift of transmission peak wavelength. More importantly, the peak intensity can be further enhanced more than 10% in transmittance due to the refractive index match of the media on both sides of it. By optically pumping the hybrid system using a UV light, nematic−isotropic phase transition of the LCs was achieved, thus changing the effective refractive index experienced by the impinging light. Due to the refractive index change, the transmission peak intensity was modulated accordingly. As a result, an optically tunable plasmonic color filter was achieved. This kind of color filters could be potentially applied to many applications, such as complementary metal-oxide-semiconductor (CMOS) image sensors, liquid crystal display devices, light emitting diodes, etc.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    H. Raether, Surface Plasmons on Smooth and Tough Surfaces and on Gratings (Springer, Berlin, 1988)

    Google Scholar 

  2. 2.

    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)

    ADS  Article  Google Scholar 

  3. 3.

    E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006)

    ADS  Article  Google Scholar 

  4. 4.

    Y.J. Liu, Q.Z. Hao, J.S.T. Smalley, J. Liou, I.C. Khoo, T.J. Huang, A frequency-addressed plasmonic switch based on dual-frequency liquid crystals. Appl. Phys. Lett. 97, 091101 (2010)

    ADS  Article  Google Scholar 

  5. 5.

    Y.J. Liu, Y.B. Zheng, J. Liou, I.-K. Chiang, I.C. Khoo, T.J. Huang, All-optical modulation of localized surface plasmon coupling in a hybrid system composed of photo-switchable gratings and Au nanodisk arrays. J. Phys. Chem. C 115, 7717–7722 (2011)

    Article  Google Scholar 

  6. 6.

    C. Genet, T.W. Ebbesen, Light in tiny holes. Nature 445, 39–46 (2007)

    ADS  Article  Google Scholar 

  7. 7.

    H.S. Lee, Y.T. Yoon, S.S. Lee, S.H. Kim, K.D. Lee, Color filter based on a subwavelength patterned metal grating. Opt. Express 15, 15457–15463 (2007)

    ADS  Article  Google Scholar 

  8. 8.

    E. Laux, C. Genet, T. Skauli, T.W. Ebbesen, Plasmonic photon sorters for spectral and polarimetric imaging. Nat. Photonics 2, 161–164 (2008)

    ADS  Article  Google Scholar 

  9. 9.

    K. Diest, J.A. Dionne, M. Spain, H.A. Atwater, Tunable color filters based on metal-insulator-metal resonators. Nano Lett. 9, 2579–2583 (2009)

    ADS  Article  Google Scholar 

  10. 10.

    T. Xu, Y.-K. Wu, X.G. Luo, L.J. Guo, Plasmonic nanoresonators for high-resolution color filtering and spectral imaging. Nat. Commun. 1, 59 (2010)

    Google Scholar 

  11. 11.

    E.S.P. Leong, Y.J. Liu, B. Wang, J.H. Teng, Effect of surface morphology on optical properties in metal-dielectric-metal thin film systems. ACS Appl. Mater. Interfaces 3, 1148–1153 (2011)

    Article  Google Scholar 

  12. 12.

    Y.J. Liu, Y.B. Zheng, J.J. Shi, H. Huang, T.R. Walker, T.J. Huang, Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals. Opt. Lett. 34, 2351–2353 (2009)

    ADS  Article  Google Scholar 

  13. 13.

    Y.J. Liu, H.T. Dai, X.W. Sun, Holographic fabrication of azo-dye-functionalized photonic structures. J. Mater. Chem. 21, 2982–2986 (2011)

    Article  Google Scholar 

  14. 14.

    K.G. Yager, C.J. Barrett, Novel photo-switching using azobenzene functional materials. J. Photochem. Photobiol. A, Chem. 182, 250–261 (2006)

    Article  Google Scholar 

  15. 15.

    A. Mooradian, Photoluminescence of metals. Phys. Rev. Lett. 22, 185–187 (1969)

    ADS  Article  Google Scholar 

  16. 16.

    G.T. Boyd, Z.H. Yu, Y.R. Shen, Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces. Phys. Rev. B 33, 7923–7936 (1986)

    ADS  Article  Google Scholar 

  17. 17.

    M. Xiao, N. Rakov, Surface propagation with a large spectral red-shift on a gold thin film containing subwavelength holes. Phys. Lett. A 309, 452–456 (2003)

    ADS  Article  Google Scholar 

  18. 18.

    Y.J. Liu, E.S.P. Leong, B. Wang, J.H. Teng, Optical transmission enhancement and tuning by overlaying liquid crystals on a gold film with patterned nanoholes. Plasmonics 6, 659–664 (2011)

    Article  Google Scholar 

  19. 19.

    M. Takei, H. Yui, Y. Hirose, T. Sawada, Femtosecond time-resolved spectroscopy of photoisomerization of methyl orange in cyclodextrincs. J. Phys. Chem. A 105, 11395–11399 (2001)

    Article  Google Scholar 

  20. 20.

    I.C. Khoo, J.-H. Park, J.D. Liou, Theory and experimental studies of all-optical transmission switching in a twist-alignment dye-doped nematic liquid crystal. J. Opt. Soc. Am. B 25, 1931–1937 (2008)

    ADS  Article  Google Scholar 

Download references


This work was financially supported by Agency for Science, Technology, and Research (A*STAR), under the Grant Nos. 0921540099 and 0921540098.

Author information



Corresponding author

Correspondence to J. H. Teng.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, Y.J., Si, G.Y., Leong, E.S.P. et al. Optically tunable plasmonic color filters. Appl. Phys. A 107, 49–54 (2012). https://doi.org/10.1007/s00339-011-6736-y

Download citation


  • Hybrid System
  • Azobenzene
  • Effective Refractive Index
  • BMAB
  • Plasmonic Nanostructures