Skip to main content
Log in

Studies on electrical switching behavior and optical band gap of amorphous Ge–Te–Sn thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Amorphous thin film Ge15Te85−x Sn x (1≤x≤5) and Ge17Te83−x Sn x (1≤x≤4) switching devices have been deposited in sandwich geometry using a flash evaporation technique, with aluminum as the top and bottom electrodes. Electrical switching studies indicate that these films exhibit memory type electrical switching behavior. The switching fields for both the series of samples have been found to decrease with increase in Sn concentration, which confirms that the metallicity effect on switching fields/voltages, commonly seen in bulk glassy chalcogenides, is valid in amorphous chalcogenide thin films also. In addition, there is no manifestation of rigidity percolation in the composition dependence of switching fields of Ge15Te85−x Sn x and Ge17Te83−x Sn x amorphous thin film samples. The observed composition dependence of switching fields of amorphous Ge15Te85−x Sn x and Ge17Te83−x Sn x thin films has been understood on the basis of Chemically Ordered Network model. The optical band gap for these samples, calculated from the absorption spectra, has been found to exhibit a decreasing trend with increasing Sn concentration, which is consistent with the composition dependence of switching fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, J. Appl. Phys. 69, 2849 (1991)

    Article  ADS  Google Scholar 

  2. I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, M. Wuttig, J. Appl. Phys. 87, 4130 (2000)

    Article  ADS  Google Scholar 

  3. S. Lai, T. Lowrey, OUM—A 180 nm Nonvolatile Memory Cell Element Technology for Stand Alone and Embedded Applications. Session 36.5, IEDM Tech. Dig. (2001)

  4. S. Lai, Current status of the phase-change memory and its future. IEDM Tech. Dig. (2003), p. 255

  5. R. Bez, Recent development in phase change memory. Extended abstract of the SSDM, Tokyo, 2004

  6. A. Waterman, Phys. Rev. 21, 540 (1923)

    Article  ADS  Google Scholar 

  7. T. Vengel, B. Kolomiets, Sov. Phys. Tech. Phys. 2, 2314 (1957)

    Google Scholar 

  8. S.R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968)

    Article  ADS  Google Scholar 

  9. S.R. Ovshinsky, Phys. Rev. Lett. 36, 1469 (1976)

    Article  ADS  Google Scholar 

  10. S.R. Ovshinsky, J. Non-Cryst. Solids 4, 538 (1970)

    Article  Google Scholar 

  11. N.F. Mott, Philos. Mag. 24, 911 (1971)

    Article  ADS  Google Scholar 

  12. D. Adler, H.K. Henisch, N.F. Mott, Rev. Mod. Phys. 50, 209 (1978)

    Article  ADS  Google Scholar 

  13. A. Alegria, A. Arruabarrena, F. Sanz, J. Non-Cryst. Solids 58, 7 (1983)

    Article  Google Scholar 

  14. M. Wuttig, N. Yamada, Nat. Mater. 6, 824 (2007)

    Article  ADS  Google Scholar 

  15. R. Bez, A. Pirovano, Mater. Sci. Semicond. Process. 7, 349 (2004)

    Article  Google Scholar 

  16. S. Hudgens, B. Johnson, MRS Bull., 829 (2004)

  17. T. Storey, K.K. Hunt, M. Graziano, B. Li, A. Bumgarner, J. Rodgers, L. Burcin, in IEEE Non-VolatileMem. Technol. Symp. (2005), p. 97

    Chapter  Google Scholar 

  18. W.Y. Cho, B.-H. Cho, B.-G. Choi, H.-R. Oh, S. Kang, K.-S. Kim, K.-H. Kim, E.-E. Kim, C.-K. Kwak, H.-G. Byun, Y. Hwang, S. Ahn, G.-H. Koh, G. Jeong, H. Jeong, K. Kim, IEEE J. Solid-State Circuits 40, 293 (2005)

    Article  Google Scholar 

  19. K. Ramesh, S. Asokan, K.S. Sangunni, E.S.R. Gopal, Appl. Phys. A 69, 421 (1999)

    Article  ADS  Google Scholar 

  20. K. Ramesh, S. Asokan, K.S. Sangunni, E.S.R. Gopal, J. Phys. Chem. Solids 61, 95 (2000)

    Article  ADS  Google Scholar 

  21. N. Manikandan, S. Asokan, Philos. Mag. 87, 5109 (2007)

    Article  ADS  Google Scholar 

  22. C. Das, G. Mohan Rao, S. Asokan, J. Non-Cryst. Solids 357, 165 (2011)

    Article  ADS  Google Scholar 

  23. M. Chen, K.A. Rubin, Proc. SPIE 1078, 150 (1989)

    ADS  Google Scholar 

  24. K. Wang, C. Steimer, D. Wamwangi, S. Ziegler, M. Wuttig, J. Tomforde, W. Bensch, Microsyst. Technol. 13, 203 (2007)

    Article  Google Scholar 

  25. K.A. Campbell, C.M. Anderson, Microelectron. J. 38, 52 (2007)

    Article  Google Scholar 

  26. K.-M. Chung, D. Wamwangi, M. Woda, M. Wuttig, W. Bensch, J. Appl. Phys. 103, 083523 (2008)

    Article  ADS  Google Scholar 

  27. K. Wang, D. Wamwangi, S. Ziegler, C. Steimer, M.J. Kang, S.Y. Choi, M. Wuttig, Phys. Status Solidi A 201, 3045 (2004)

    Article  ADS  Google Scholar 

  28. M. Anbarasu, S. Asokan, J. Appl. Phys. 109, 084517 (2011)

    Article  ADS  Google Scholar 

  29. B.W. Qiao, J. Feng, Y.F. Lai, Y. Cai, Y.Y. Lin, T.A. Tang, B.C. Cai, B. Chen, Semicond. Sci. Technol. 21, 1073 (2006)

    Article  ADS  Google Scholar 

  30. J.C. Phillips, J. Non-Cryst. Solids 34, 153 (1979)

    Article  ADS  Google Scholar 

  31. M.F. Thorpe, J. Non-Cryst. Solids 57, 355 (1983)

    Article  ADS  Google Scholar 

  32. R. Aravinda Narayanan, Ph.D. Thesis Indian Institute of Science, Bangalore, 2001

  33. S.S.K. Titus, R. Chatterjee, S. Asokan, A. Kumar, Phys. Rev. B 48, 14650 (1993)

    Article  ADS  Google Scholar 

  34. C.N. Murthy, V. Ganesan, S. Asokan, Appl. Phys. A 81, 939 (2005)

    Article  ADS  Google Scholar 

  35. S. Murugavel, S. Asokan, J. Non-Cryst. Solids 249, 145 (1999)

    Article  ADS  Google Scholar 

  36. S. Murugavel, S. Asokan, J. Mater. Res. 13, 2982 (1998)

    Article  ADS  Google Scholar 

  37. R. Aravinda Narayanan, S. Asokan, A. Kumar, Phys. Rev. B 54, 4413 (1996)

    Article  ADS  Google Scholar 

  38. S. Prakash, S. Asokan, D.B. Ghare, Semicond. Sci. Technol. 9, 1484 (1994)

    Article  ADS  Google Scholar 

  39. M. Anbarasu, S. Asokan, J. Phys. D, Appl. Phys. 40, 7515 (2007)

    Article  ADS  Google Scholar 

  40. C. Das, M.G. Mahesha, G. Mohan Rao, S. Asokan, Thin Solid Films (2011, in press)

  41. B.H. Sharmila, J.T. Devaraju, S. Asokan, J. Non-Cryst. Solids 326–327, 154 (2003)

    Article  Google Scholar 

  42. J.T. Devaraju, B.H. Sharmila, S. Asokan, K.V. Acharya, Philos. Mag., B 81, 583 (2001)

    ADS  Google Scholar 

  43. S. Murugavel, Ph.D. Thesis, Indian Institute of Science, Bangalore, 1998

  44. M. Stevens, J. Grothaus, P. Boolchand, J.G. Hernandez, Solid State Commun. 47, 199 (1983)

    Article  ADS  Google Scholar 

  45. G. Lucovsky, F.L. Galeener, R.H. Geils, R.C. Keezer, P.H. Gaskell (eds.), The Structure of Non-Crystalline Materials (Taylor and Francis, London, 1977)

    Google Scholar 

  46. D.R. Lide, CRC Handbook of Chemistry and Physics 90 Internet Version (CRC Press/Taylor and Francis, Boca Raton, 2010)

    Google Scholar 

  47. J.R. Cehlikowsky, J.C. Phillips, Phys. Rev. B 17, 2453 (1978)

    Article  ADS  Google Scholar 

  48. T. Fukunaga, Y. Tanaka, K. Murase, Solid State Commun. 42, 513 (1982)

    Article  ADS  Google Scholar 

  49. J. Tauc, Amorphous and Liquid Semiconductor (Plenum Press, New York, 1974)

    Book  Google Scholar 

  50. J.M. Mikrut, L.E. McNeil, J. Non-Cryst. Solids 114, 127 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Asokan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, C., Mahesha, M.G., Mohan Rao, G. et al. Studies on electrical switching behavior and optical band gap of amorphous Ge–Te–Sn thin films. Appl. Phys. A 106, 989–994 (2012). https://doi.org/10.1007/s00339-011-6726-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6726-0

Keywords

Navigation