Skip to main content

Advertisement

Log in

Graphene modulated by external fields: a nonresonant left-handed metamaterial

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Combining Landau diamagnetism and differential magnetic susceptibility to an electromagnetic wave, we theoretically predict a graphene-sheet periodic structure, which exhibits a left-handed property to an electromagnetic wave in the infrared region by modulating external fields. Our new mechanism, unlike the usual mechanism, does not use resonant behavior and is thus able to synthesize broadband left-handed metamaterial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Since the fermion velocity v F=c/300≪c, where c is the vacuum light speed, the long-wave limit is always correct in graphene.

  2. For instance, nonzero ϵ 2 will lead to an optical rotation effect, which we shall discuss in detail elsewhere.

  3. In physics, when a modulating magnetic field is applied perpendicularly to a graphene sheet, it will quantize the carrier energy level, which means that the carrier will possess a discrete energy level rather than a continuous one. One of the effects of this quantization is that the carriers’ total energy varies with the modulating magnetic field, which leads to Landau diamagnetism of the material. In graphene, because of the zero effective mass of the carriers and the relativistic-type spectrum of low-energy electrons and holes, such diamagnetism is more sensitive to the external fields and thus can be modulated efficiently by the external fields.

References

  1. V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968)

    Article  ADS  Google Scholar 

  2. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)

    Article  ADS  Google Scholar 

  3. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Science 305, 788 (2004)

    Article  ADS  Google Scholar 

  4. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  5. J.B. Pendry, Nature (London) 423, 22 (2003)

    Article  ADS  Google Scholar 

  6. F.L. Li, A.P. Fang, M. Wang, J. Phys. B 42, 195505 (2009)

    Article  ADS  Google Scholar 

  7. G.V. Eleftheriades, K.G. Balmain, Negative-Refraction Metamaterials (Wiley, New York, 2005). Sect. 2

    Book  Google Scholar 

  8. R. Marques, F. Martin, M. Sorolla, Metamaterials with Negative Parameters (Wiley, New York, 2008). Sect. 1

    Google Scholar 

  9. T.J. Cui, D.R. Smith, R.P. Liu, Metamaterials (Springer, Berlin, 2010). Sect. 1

    Book  Google Scholar 

  10. J.B. Pendry, Fundamentals and Applications of Negative Refraction in Metamaterials (Princeton University Press, Princeton, 2007)

    Google Scholar 

  11. J.B. Pendry, Science 306, 1353 (2004)

    Article  ADS  Google Scholar 

  12. S. Tretyakov, A. Sitivola, L. Jylha, Photonics Nanostruct. Fundam. Appl. 3, 107 (2005)

    Article  ADS  Google Scholar 

  13. C. Monzon, D.W. Forester, Phys. Rev. Lett. 95, 123904 (2005)

    Article  ADS  Google Scholar 

  14. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, C. M. Soukoulis, Phys. Rev. B 79, 121104 (2009)

    Article  ADS  Google Scholar 

  15. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 669 (2004)

    Article  ADS  Google Scholar 

  16. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  17. Y. Zhang, Y. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  18. V.V. Cheianov, V. Fal’ko, B.L. Altshuler, Science 315, 1252 (2007)

    Article  ADS  Google Scholar 

  19. J.B. Pendry, Science 315, 1226 (2007)

    Article  Google Scholar 

  20. M.R. Setare, D. Jahani, J. Phys., Condens. Matter 22, 245503 (2010)

    Article  ADS  Google Scholar 

  21. J. Cserti, A. Pályi, C. Péterfalvi, Phys. Rev. Lett. 99, 246801 (2007)

    Article  ADS  Google Scholar 

  22. D. Liu, S. Zhang, E. Zhang, N. Ma, H. Chen, Europhys. Lett. 89, 37002 (2010)

    Article  ADS  Google Scholar 

  23. S. Das Sarma, E.H. Hwang, Phys. Rev. Lett. 102, 206412 (2009)

    Article  ADS  Google Scholar 

  24. E.H. Hwang, S. Das Sarma, Phys. Rev. B 75, 205418 (2007)

    Article  ADS  Google Scholar 

  25. K.W.K. Shung, Phys. Rev. B 34, 979 (1986)

    Article  ADS  Google Scholar 

  26. T. Ando, J. Phys. Soc. Jpn. 75, 074716 (2006)

    Article  ADS  Google Scholar 

  27. B. Wunsch, T. Stauber, F. Sols, F. Guinea, New J. Phys. 8, 318 (2006)

    Article  ADS  Google Scholar 

  28. K. Nomura, A.H. MacDonald, Phys. Rev. Lett. 96, 256602 (2006)

    Article  ADS  Google Scholar 

  29. S.L. Zhang, N. Ma, E.H. Zhang, J. Phys., Condens. Matter 22, 115302 (2010)

    Article  ADS  Google Scholar 

  30. R. Biswas, A. Biswas, N. Hui, C. Sinha, J. Appl. Phys. 108, 043708 (2010)

    Article  ADS  Google Scholar 

  31. D.S.L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, T. Chakraborty, Adv. Phys. 59(4), 261 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Prof. F.S. Qiu and Dr. M.G. Xia. This work was supported by the Key Grant Project of the Chinese Ministry of Education (Grant No. 708082), the National Basic Research Program of China (973 Program) (Grant No. 2009CB623306), the International Science & Technology Cooperation Program of China (Grant No. 2010DFR50480), the National Natural Science Foundation of China–NSAF (Grant No. 10976022) and the National Natural Science Foundation of China (Grant Nos. 50632030 and 11074196).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daqing Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, D., Xu, Z., Ma, N. et al. Graphene modulated by external fields: a nonresonant left-handed metamaterial. Appl. Phys. A 106, 949–954 (2012). https://doi.org/10.1007/s00339-011-6717-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6717-1

Keywords

Navigation