Skip to main content

A deep view in cultural heritage—confocal micro X-ray spectroscopy for depth resolved elemental analysis

Abstract

Quantitative X-ray fluorescence (XRF) and particle induced X-ray emission (PIXE) techniques have been developed mostly for the elemental analysis of homogeneous bulk or very simple layered materials. Further on, the microprobe version of both techniques is applied for 2D elemental mapping of surface heterogeneities. At typical XRF/PIXE fixed geometries and exciting energies (15–25 keV and 2–3 MeV, respectively), the analytical signal (characteristic X-ray radiation) emanates from a variable but rather extended depth within the analyzed material, according to the exciting probe energy, set-up geometry, specimen matrix composition and analyte. Consequently, the in-depth resolution offered by XRF and PIXE techniques is rather limited for the characterization of materials with micrometer-scale stratigraphy or 3D heterogeneous structures. This difficulty has been over-passed to some extent in the case of an X-ray or charged particle microprobe by creating the so-called confocal geometry. The field of view of the X-ray spectrometer is spatially restricted by a polycapillary X-ray lens within a sensitive microvolume formed by the two inter-sectioned focal regions. The precise scanning of the analyzed specimen through the confocal microvolume results in depth-sensitive measurements, whereas the additional 2D scanning microprobe possibilities render to element-specific 3D spatial resolution (3D micro-XRF and 3D micro-PIXE). These developments have contributed since 2003 to a variety of fields of applications in environmental, material and life sciences. In contrast to other elemental imaging methods, no size restriction of the objects investigated and the non-destructive character of analysis have been found indispensable for cultural heritage (CH) related applications. The review presents a summary of the experimental set-up developments at synchrotron radiation beamlines, particle accelerators and desktop spectrometers that have driven methodological developments and applications of confocal X-ray microscopy including depth profiling speciation studies by means of confocal X-ray absorption near edge structure (XANES) spectroscopy. The solid mathematical formulation developed for the quantitative in-depth elemental analysis of stratified materials is exemplified and depth profile reconstruction techniques are discussed. Selected CH applications related to the characterization of painted layers from paintings and decorated artifacts (enamels, glasses and ceramics), but also from the study of corrosion and patina layers in glass and metals, respectively, are presented. The analytical capabilities, limitations and future perspectives of the two variants of the confocal micro X-ray spectroscopy, 3D micro-XRF and 3D micro-PIXE, with respect to CH applications are critically assessed and discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. R.E. Van Grieken, A.A. Markowicz (eds.), Handbook of X-Ray Spectrometry, 2nd edn. (Dekker, New York, 2002). ISBN 0824706005

    Google Scholar 

  2. B. Beckhoff, B. Kanngießer, N. Langhoff, R. Wedell, H. Wolff (eds.), Handbook of Practical X-Ray Fluorescence Analysis (Springer, Berlin, 2006). ISBN 3-540-28603-9

    Google Scholar 

  3. S.A.E. Johansson, J.L. Campbell, PIXE: A Novel Technique for Elemental Analysis (Wiley, New York, 1988). ISBN 0471920118

    Google Scholar 

  4. B. Kanngießer, W. Malzer, I. Reiche, Nucl. Instrum. Methods Phys. Res. B 211–212, 259 (2003)

    Article  Google Scholar 

  5. G.J. Havrilla, T. Miller, Powder Diffr. 19(2), 119 (2004)

    ADS  Article  Google Scholar 

  6. B. Kanngießer, W. Malzer, A. Fuentes Rodriguez, I. Reiche, Spectrochim. Acta B 60, 41 (2005)

    ADS  Article  Google Scholar 

  7. A.G. Karydas, D. Sokaras, Ch. Zarkadas, N. Grlj, P. Pelicon, M. Žitnik, R. Schütz, W. Malzer, B. Kanngießer, J. Anal. At. Spectrom. 22, 1260 (2007)

    Article  Google Scholar 

  8. B. Kanngießer, A.G. Karydas, R. Schütz, D. Sokaras, I. Reiche, S. Röhrs, L. Pichon, J. Salomon, Nucl. Instrum. Methods Phys. Res. B 264(2), 383 (2007)

    ADS  Article  Google Scholar 

  9. A. Gianoncelli, G. Kourousias, Appl. Phys. A 89, 857 (2007)

    ADS  Article  Google Scholar 

  10. R. Cesareo, A. Brunetti, S. Ridolfi, X-Ray Spectrom. 37(4), 309 (2008)

    Article  Google Scholar 

  11. A.G. Karydas, H. Brecoulaki, B. Bourgeois, Ph. Jockey, in Proceedings of 7th International Conference of Association for the Study of Marble and Other Stones in Antiquity. BCH Suppl., vol. 51 (2009), pp. 811–829

    Google Scholar 

  12. A.G. Karydas, Ann. Chim. 97(7), 419 (2007)

    Article  Google Scholar 

  13. C. Neelmeijer, I. Brissaud, T. Calligaro, G. Demortier, A. Hautojärvi, M. Mäder, L. Martinot, M. Schreiner, T. Tuurnala, G. Weber, X-Ray Spectrom. 29(1), 101 (2000)

    Article  Google Scholar 

  14. L. de Viguerie, L. Beck, J. Salomon, L. Pichon, Ph. Walter, Anal. Chem. 81, 7960 (2009)

    Article  Google Scholar 

  15. B. Nsouli, M. Roumié, K. Zahraman, J.P. Thomas, M. Nasreddine, Nucl. Instrum. Methods Phys. Res. B 192, 311 (2002)

    ADS  Article  Google Scholar 

  16. J. Miranda, J. Rickards, R. Trejo-Luna, Nucl. Instrum. Methods Phys. Res. B 249, 394 (2006)

    ADS  Article  Google Scholar 

  17. A. Denker, J. Opitz-Coutureau, Nucl. Instrum. Methods Phys. Res. B 213, 677 (2004)

    ADS  Article  Google Scholar 

  18. J. Dik, K. Janssens, G. Van Der Snickt, L. van der Loeff, K. Rickers, M. Cotte, Anal. Chem. 80(16), 6436 (2008)

    Article  Google Scholar 

  19. K. Janssens, J. Dik, M. Cotte, J. Susini, Acc. Chem. Res. 43(6), 814 (2010)

    Article  Google Scholar 

  20. C. Neelemeijer, W. Wagner, H.P. Schramm, Nucl. Instrum. Methods Phys. Res. B 118, 338 (1996)

    ADS  Article  Google Scholar 

  21. C. Neelemeijer, M. Mäder, Nucl. Instrum. Methods Phys. Res. B 189, 293 (2002)

    ADS  Article  Google Scholar 

  22. P.A. Mandó, M.E. Fedi, N. Grassi, A. Migliori, Nucl. Instrum. Methods Phys. Res. B 239, 71 (2005)

    ADS  Article  Google Scholar 

  23. Ž. Šmit, M. Uršič, P. Pelicon, T. Trček-Pečak, B. Seme, A. Šmrekar, I. Langus, I. Nemec, K. Kavkler, Nucl. Instrum. Methods Phys. Res. B 266, 2047 (2008)

    ADS  Article  Google Scholar 

  24. N. Grassi, Nucl. Instrum. Methods Phys. Res. B 267, 825 (2009)

    ADS  Article  Google Scholar 

  25. G. Demortier, J.L. Ruvalcaba-Sil, Nucl. Instrum. Methods Phys. Res. B 118, 352 (1996)

    ADS  Article  Google Scholar 

  26. Ž. Šmit, M. Holc, Nucl. Instrum. Methods Phys. Res. B 219–220, 524 (2004)

    Google Scholar 

  27. Ž. Šmit, J. Istenič, T. Knific, Nucl. Instrum. Methods Phys. Res. B 266, 2329 (2008)

    ADS  Article  Google Scholar 

  28. G. Lagarde, P. Midy, I. Brissaud, Nucl. Instrum. Methods Phys. Res. B 132, 521 (1997)

    ADS  Article  Google Scholar 

  29. I. Brissaud, G. Lagarde, P. Midy, Nucl. Instrum. Methods Phys. Res. B 117, 179 (1996)

    ADS  Article  Google Scholar 

  30. I. Brissaud, A. Guilló, G. Lagarde, P. Midy, T. Calligaro, J. Salomon, Nucl. Instrum. Methods Phys. Res. B 155, 447 (1999)

    ADS  Article  Google Scholar 

  31. C. Miliani, F. Rosi, B.G. Brunetti, A. Sgamellotti, Acc. Chem. Res. 43(6), 728 (2010)

    Article  Google Scholar 

  32. L. Bonizzoni, A. Galli, G. Poldi, M. Milazzo, X-Ray Spectrom. 36(2), 55 (2007)

    Article  Google Scholar 

  33. L. Bonizzoni, S. Caglio, A. Galli, Appl. Phys. A 92, 203 (2008)

    ADS  Article  Google Scholar 

  34. L. Pappalardo, G. Pappalardo, F. Amorini, M.G. Branciforti, F.P. Romano, J. de Sanoit, F. Rizzo, E. Scafiri, A. Taormina, G. Gatto Rotondo, X-Ray Spectrom. 37(4), 370 (2008)

    Article  Google Scholar 

  35. J.A. Pérez-Serradilla, A. Jurado-López, M.D. Luque de Castro, Talanta 71, 97 (2007)

    Article  Google Scholar 

  36. V. Kantarelou, Ch. Zarkadas, A. Giakoumaki, M. Giannoulaki, A.G. Karydas, D. Anglos, V. Argyropoulos, Innovative investigation of metal artifacts, in Proceedings of METAL-07, vol. 2 (2007), pp. 35–41

    Google Scholar 

  37. F. Rizzo, G.P. Cirrone, G. Cuttone, A. Esposito, S. Garraffo, G. Pappalardo, L. Pappalardo, F.P. Romano, S. Russo, Microchem. J. 97(2), 286 (2011)

    Article  Google Scholar 

  38. L. Beck, L. de Viguerie, Ph. Walter, L. Pichon, P.C. Gutierrez, J. Salomon, M. Menu, S. Sorieul, Nucl. Instrum. Methods Phys. Res. B 268, 2086 (2010)

    ADS  Article  Google Scholar 

  39. B. Kanngießer, I. Mantouvalou, W. Malzer, T. Wolff, O. Hahn, J. Anal. At. Spectrom. 23(6), 814 (2008)

    Article  Google Scholar 

  40. B. De Samber, G. Silversmit, K. De Schamphelaere, R. Evens, T. Schoonjans, B. Vekemans, C. Janssen, B. Masschaele, L. Van Hoorebeke, I. Szaloki, F. Vanhaecke, K. Rickers, G. Falkenberg, L. Vincze, J. Anal. At. Spectrom. 25, 544 (2010)

    Article  Google Scholar 

  41. W. Faubel, R. Simon, S. Heissler, F. Friedrich, P.G. Weidler, H. Becker, W. Schmidt, J. Anal. At. Spectrom. (2011). doi:10.1039/c0ja00178c.

    Google Scholar 

  42. G. Silversmit, B. Vekemans, S. Nikitenko, S. Schmitz, T. Schoonjans, F.E. Brenker, L. Vincze, Phys. Chem. Chem. Phys. 12, 5653 (2010)

    Article  Google Scholar 

  43. L. Vincze, B. Vekemans, F.E. Brenker, G. Falkenberg, K. Rickers, A. Somogyi, M. Kersten, F. Adams, Anal. Chem. 76, 6786 (2004)

    Article  Google Scholar 

  44. A. Woll, J. Mass, C. Bisulca, R. Huang, D.H. Bilderback, S. Gruner, N. Gao, Appl. Phys. A 83, 235 (2006)

    ADS  Article  Google Scholar 

  45. X. Wei, Y. Lei, T. Sun, X. Lin, Q. Xu, D. Chen, Y. Zou, Z. Jiang, Y. Huang, X. Yu, X. Ding, H. Xu, X-Ray Spectrom. 37, 595 (2008)

    Article  Google Scholar 

  46. R.D. Perez, H.J. Sanchez, M. Rubio, C.A. Perez, X-Ray Spectrom. 40(1), 19 (2011)

    Article  Google Scholar 

  47. I. Mantouvalou, K. Lange, T. Wolff, D. Grötzsch, L. Lühl, M. Haschke, O. Hahn, B. Kanngießer, J. Anal. At. Spectrom. 25, 554 (2010)

    Article  Google Scholar 

  48. X. Lin, Z. Wang, T. Sun, Q. Pan, X. Ding, Nucl. Instrum. Methods Phys. Res. B 266, 2638 (2008)

    ADS  Article  Google Scholar 

  49. K. Nakano, K. Tsuji, J. Anal. At. Spectrom. 25, 562 (2010)

    Article  Google Scholar 

  50. D. Wegrzynek, R. Mroczka, A. Markowicz, E. Chinea-Cano, S. Bamford, X-Ray Spectrom. 37, 635 (2008)

    Article  Google Scholar 

  51. M.A. Denecke, B. Brendebach, W. De Nolf, G. Falkenberg, K. Janssens, R. Simon, Spectrochim. Acta B 64, 791 (2009)

    ADS  Article  Google Scholar 

  52. D. Sokaras, A.G. Karydas, W. Malzer, R. Schütz, B. Kanngießer, N. Grlj, P. Pelicon, M. Zitnik, J. Anal. At. Spectrom. 24, 611 (2009)

    Article  Google Scholar 

  53. M. Zitnik, P. Pelicon, N. Grlj, A.G. Karydas, D. Sokaras, R. Schutz, B. Kanngießer, Appl. Phys. Lett. 93, 094104 (2008)

    ADS  Article  Google Scholar 

  54. M. Zitnik, P. Pelicon, K. Bucar, N. Grlj, A.G. Karydas, D. Sokaras, R. Schutz, B. Kanngiesser, X-Ray Spectrom. 38(6), 526 (2009)

    Article  Google Scholar 

  55. M. Zitnik, N. Grlj, P. Vaupetic, P. Pelicon, K. Bucar, D. Sokaras, A.G. Karydas, B. Kanngiesser, J. Anal. At. Spectrom. 25, 28 (2010)

    Article  Google Scholar 

  56. N. Grlj, P. Pelicon, M. Žitnik, P. Vavpetič, D. Sokaras, A.G. Karydas, B. Kanngießer, Nucl. Instrum. Methods Phys. Res. B (2011). doi:10.1016/j.nimb.2011.02.072

    Google Scholar 

  57. W. Malzer, B. Kanngießer, Spectrochim. Acta B 60, 1334 (2005)

    ADS  Article  Google Scholar 

  58. Z. Smit, K. Janssens, K. Proost, I. Langus, Nucl. Instrum. Methods Phys. Res. B 219–220, 35 (2004)

    Article  Google Scholar 

  59. T. Wolff, I. Mantouvalou, W. Malzer, J. Nissen, D. Berger, I. Zizak, D. Sokaras, A.G. Karydas, N. Grlj, P. Pelicon, R. Schütz, M. Žitnik, B. Kanngießer, J. Anal. At. Spectrom. 24, 669 (2009)

    Article  Google Scholar 

  60. I. Mantouvalou, W. Malzer, I. Schaumann, L. Lühl, R. Dargel, C. Vogt, B. Kanngießer, Anal. Chem. 80, 819 (2008)

    Article  Google Scholar 

  61. I. Schaumann, W. Malzer, I. Mantouvalou, L. Lühl, B. Kanngießer, R. Dargel, U. Giese, C. Vogt, Spectrochim. Acta B 64, 334 (2009)

    ADS  Article  Google Scholar 

  62. B. Vekemans, L. Vincze, F.E. Brenker, F. Adams, J. Anal. At. Spectrom. 19, 1302 (2004)

    Article  Google Scholar 

  63. D. Sokaras, A.G. Karydas, Anal. Chem. 81, 4946 (2009)

    Article  Google Scholar 

  64. A. Adriaens, Spectrochim. Acta B 60, 1503 (2005)

    ADS  Article  Google Scholar 

  65. A. Woll, J. Mass, Ch. Bisulca, M. Cushman, C. Griggs, T. Wazny, N. Ocon, Stud. Conserv. 53, 93 (2008)

    Google Scholar 

  66. Ch. Bisulca, A. Woll, J. Mass, N. Ocon, C. Griggs, T. Wazny, M. Cushman, in Proceedings of 9th Int. Conf. NDT of Art, Jerusalem, Israel, 25–30 May, 2008

    Google Scholar 

  67. B. Kanngießer, I. Mantouvalou, W. Malzer, T. Wolff, O. Hahn, J. Anal. At. Spectrom. 23, 814 (2008)

    Article  Google Scholar 

  68. K. Nakano, K. Tsuji, X-Ray Spectrom. 38, 446 (2009)

    Article  Google Scholar 

  69. A. Guilherme, J. Coroado, J.M.F. dos Santos, L. Lühl, T. Wolff, B. Kanngießer, M.L. Carvalho, Spectrochim. Acta B 66(5), 297 (2011)

    ADS  Article  Google Scholar 

  70. I. Reiche, S. Röhrs, J. Salomon, B. Kanngießer, Y. Höhn, W. Malzer, F. Voigt, Anal. Bioanal. Chem. 393, 1025 (2009)

    Article  Google Scholar 

  71. E. Aloupi-Siotis, Recovery and revival of attic vase-decoration techniques, what can they offer archaeological research, in Papers on Special Techniques in Athenian Vases (J. Paul Getty Museum, Los Angeles, 2008), pp. 113–128

    Google Scholar 

  72. I. Mantouvalou, T. Wolff, O. Hahn, I. Rabin, L. Lühl, M. Pagels, W. Malzer, B. Kanngießer, Anal. Chem. 83(16), 6308 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kanngießer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kanngießer, B., Malzer, W., Mantouvalou, I. et al. A deep view in cultural heritage—confocal micro X-ray spectroscopy for depth resolved elemental analysis. Appl. Phys. A 106, 325–338 (2012). https://doi.org/10.1007/s00339-011-6698-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6698-0

Keywords

  • Paint Layer
  • Proton Microprobe
  • Cultural Heritage Object
  • Elemental Depth Profile
  • Polycapillary Lens