Skip to main content

The past and the future of chromogenic colour photographs: lifetime modelling using near-infrared spectroscopy & enhancement using hypoxia


Chromogenic colour prints are amongst the most unstable materials found in heritage collections as the information-carrying dyes fade appreciably even in the dark. However, image stability is just one of the numerous properties that photographic companies aspire for in their products, along with constant improvements in colour balance and image development.

It is shown that these continuous changes can be exploited to model the date a print was developed, as well as dye stability. As a non-destructive analytical technique, near-infrared spectroscopy in conjunction with multivariate data analysis was used to derive models to predict the year of development of a photographic print (Root Mean Square Error of Cross-Validation, RMSECV = 5.4 years) and dye stability (RMSECV = 1.4 ΔE T , i.e. normalised annual colour change).

To examine the possibility to extend the lifetime of the valuable objects during storage, the use of oxygen-depleted environments (hypoxia) was also investigated. The results obtained show that hypoxia should not be used as a blanket approach for all chromogenic prints, as some degraded faster in hypoxic conditions than the control samples degraded in air. However, for most samples hypoxic storage turned out to be beneficial.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    R.W.G. Hunt, The Reproduction of Colour (Wiley-Blackwell, New York, 1967)

    Google Scholar 

  2. 2.

    M.L. Ritzenthaler, D. Vogt-O’Connor, Photographs, archival care and management (Society of American Archivists 2006)

  3. 3.

    G. Weaver, Z. Long, Chromogenic characterisation: a study of Kodak color prints, 1942–2008, in PMG Winter Meeting (2009)

    Google Scholar 

  4. 4.

    K.B. Hendriks, The preservation and restoration of photographic materials in archives and libraries: a RAMP study with guidelines (UNESCO 1984)

  5. 5.

    R.J. Tuite, J. Appl. Photogr. Eng. 50, 8 (1979)

    Google Scholar 

  6. 6.

    B. Lavédrine, J.-P. Gandolfo, S. Monod, A guide to the preventive conservation of photograph collections (Getty Conservation Institute, 2003)

  7. 7.

    R.D. Theys, G. Sosnovsky, Chem. Rev. 97, 83 (1997)

    Article  Google Scholar 

  8. 8.

    P. Bergthaller, Imaging Sci. J. 50, 233 (2002)

    Google Scholar 

  9. 9.

    T.F. Parsons, G.G. Gray, I.H. Crawford, J. Appl. Photogr. Eng. 5, 110 (1979)

    Google Scholar 

  10. 10.

    M.R. Peres, The Focal Encyclopedia of Photography: Digital Imaging, Theory and Applications, History, and Science (Focal Press 2007)

    Google Scholar 

  11. 11.

    D.R. Cycleback, Judging the authenticity of photographs ( 2007)

  12. 12.

    L. Ross, Top. Photogr. Preserv. 1, 31 (1986)

    Google Scholar 

  13. 13.

    T. Trafela, M. Strlič, J. Kolar, D.A. Lichtblau, M. Anders, D.P. Mencigar, B. Pihlar, Anal. Chem. 79, 6319 (2007)

    Article  Google Scholar 

  14. 14.

    H. Stenlund, E. Johansson, J. Gottfries, J. Trygg, Anal. Chem. 81, 203 (2009)

    Article  Google Scholar 

  15. 15.

    H. Abdi, Multivariate analysis, in Encyclopedia of Social Sciences Research Methods, ed. by M. Lewis-Beck, A. Bryman, T. Futing (Sage, Thousand Oaks, 2003)

    Google Scholar 

  16. 16.

    D.L. Massart, B.G.M. Vandeginste, S.N. Deming, Y. Michotte, L. Kaufman, Chemometrics: A Textbook (Elsevier, Amsterdam, 1988)

    MATH  Google Scholar 

  17. 17.

    A. Fenech, M. Strlič, I. Degano, M. Cassar, Polym. Degrad. Stab. 95, 2481 (2010)

    Article  Google Scholar 

  18. 18.

    B. Lindbloom, Useful color equations ( 2007)

  19. 19.

    Q. Guo, W. Wu, D.L. Massart, Anal. Chim. Acta 382, 87 (1999)

    Article  Google Scholar 

  20. 20.

    E. Richardson, Investigating the characterisation and stability of polyamide 6,6 in heritage artefacts, PhD Thesis (University of Southampton, 2009)

  21. 21.

    J.L. Guiñón, E. Ortega, J. García-Antón, V. Pérez-Herranz, Moving average and Savitzki-Golay smoothing filters using Mathcad, in International Conference on Engineering Education (2007)

    Google Scholar 

  22. 22.

    M. Otto, Chemometrics: Statistics and Computer Application in Analytical Chemistry, 2nd edn. ( Wiley-VCH, New York, 2007)

    Google Scholar 

  23. 23.

    G. Di Pietro, Examples of using advanced analytical techniques to investigate the degradation of photographic materials, in Physical Techniques in the Study of Art, Archaeology and Cultural Heritage, ed. by D. Bradley, D. Creagh (Elsevier, Amsterdam, 2007)

    Google Scholar 

  24. 24.

    G. Di Pietro, P.J. Mahon, D.C. Creagh, M. Newnham, The identification of photographic dyes in cultural materials using Raman spectroscopy, in 8th International Conference on Nondestructive Investigations and Microanalysis for the Diagnostics and Conservation of the Cultural and Environmental Heritage (2005)

    Google Scholar 

  25. 25.

    P. Bergthaller, Imaging Sci. J. 50, 153 (2002)

    Google Scholar 

  26. 26.

    P. Bergthaller, Imaging Sci. J. 50, 187 (2002)

    Google Scholar 

  27. 27.

    M. Strlič, I. Kralj Cigić, A. Možir, G. De Bruin, J. Kolar, M. Cassar, Polym. Degrad. Stab. 96, 608 (2011)

    Article  Google Scholar 

  28. 28.

    M. Ryhl-Svendsen, G. Clausen, Stud. Conserv. 54, 35 (2009)

    Google Scholar 

Download references


The authors gratefully acknowledge the financial support of the UK AHRC/EPSRC Science and Heritage Programme (project CDA 08/412, additionally supported by The National Archives, UK).

Author information



Corresponding author

Correspondence to Matija Strlič.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fenech, A., Strlič, M. & Cassar, M. The past and the future of chromogenic colour photographs: lifetime modelling using near-infrared spectroscopy & enhancement using hypoxia. Appl. Phys. A 106, 411–417 (2012).

Download citation


  • Photographic Print
  • Colour Photograph
  • Standard Normal Variate
  • Image Stability
  • Unstable Material