Skip to main content
Log in

Molecular dynamics simulation of neck growth in laser sintering of different-sized gold nanoparticles under different heating rates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The neck growth in the laser sintering of different-sized gold (100) nanoparticles under different heating rates is investigated using a molecular dynamics method. The numerical simulations are carried out for four pairs of two spherical nanoparticles under three different heating rates. For each pair, one nanoparticle has the same diameter of 4 nm and the other nanoparticle’s diameter is varied, ranging from 4 nm to 20 nm. The results show that the solid state sintering automatically takes place by local potential at room temperature. The stable neck width increases as the size of the other nanoparticle increases. Once the limit stable neck width is reached, it no longer is affected by the nanoparticle size. For the subsequent laser heating to the same final temperature, a lower heating rate results in a larger stable neck width due to the longer sintering process. The neck growth mechanisms and rate under various sintering conditions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.M. German, Sintering Theory and Practice (Wiley, New York, 1996)

    Google Scholar 

  2. J.J. Beaman, H.L. Marcus, D.L. Bourell, J.W. Barlow, R.H. Crawford, K.P. McAlea, Solid Freeform Fabrication: A New Direction in Manufacturing (Kluwer Academic, Norwell, 1997)

    Book  Google Scholar 

  3. S. Kumar, Selective laser sintering: a qualitative and objective approach. J. Miner. Met. Mater. Soc. 55, 43–47 (2003)

    Article  Google Scholar 

  4. Y. Zhang, A. Faghri, C.W. Buckley, T.L. Bergman, Three-dimensional sintering of two-component metal powders with stationary and moving laser beams. J. Heat Transf. 122, 150–158 (2000)

    Article  Google Scholar 

  5. T.H.C. Childs, A.E. Tontowi, Selective laser sintering of a crystalline and a glass-filled crystalline polymer: experiments and simulations. Proc. Inst. Mech. Eng., B J. Eng. Manuf. 215, 1481–1495 (2001)

    Article  Google Scholar 

  6. B. Xiao, Y. Zhang, Laser sintering of metal powders on top of sintered layers under multiple-line laser scanning. J. Phys. D, Appl. Phys. 40, 6725–6734 (2007)

    Article  ADS  Google Scholar 

  7. Y. Shi, Y. Zhang, C. Konrad, Solid-liquid-vapor phase change of a subcooled metal powder particle subjected to nanosecond laser heating. Nanoscale Microscale Thermophys. Eng. 11, 301–318 (2007)

    Article  Google Scholar 

  8. C. Konrad, Y. Zhang, Y. Shi, Melting and resolidification of a subcooled metal powder particle subjected to nanosecond laser heating. Int. J. Heat Mass Transf. 50, 2236–2245 (2007)

    Article  MATH  Google Scholar 

  9. J.M. Haile, Molecular Dynamics Simulation: Elementary Methods. Wiley Professional Paperback Edition (1992)

  10. H. Zhu, R.S. Averback, Sintering processes of two nanoparticles: a study by molecular dynamics simulations. Philos. Mag. Lett. 73, 27–33 (1996)

    Article  ADS  Google Scholar 

  11. S. Arcidiacono, N.R. Bieri, D. Poulikakos, C.P. Grigoropoulos, On the coalescence of gold nanoparticles. Int. J. Heat Mass Transf. 30, 979–994 (2004)

    MATH  Google Scholar 

  12. H. Pan, S.H. Ko, C.P. Grigoropoulos, The solid-state neck growth mechanisms in low energy laser sintering of gold nanoparticles: a molecularly dynamics. J. Heat Transf. 130, 092404 (2008)

    Article  Google Scholar 

  13. P. Song, D. Wen, Molecular dynamics simulation of the sintering of metallic nanoparticles. J. Nanopart. Res. 12, 823–829 (2009)

    Article  Google Scholar 

  14. D.L. Johnson, New method of obtaining volume, grain-boundary, and surface diffusion coefficients from sintering data. J. Appl. Phys. 40, 192–200 (1968)

    Article  ADS  Google Scholar 

  15. J.-H. Shim, S.-C. Lee, B.-J. Lee, J.-Y. Suh, Y.W. Cho, Molecular dynamics simulation of the crystallization of a liquid gold nanoparticle. J. Cryst. Growth 250, 558–564 (2003)

    Article  ADS  Google Scholar 

  16. G.J. Ackland, A.P. Jones, Application of local crystal structure measures in experiment and simulation. Phys. Rev., B Solid State 73, 05104 (2005)

    Google Scholar 

  17. P. Zeng, S. Zajac, P.C. Clapp, J.A. Rifkin, Nanoparticle sintering simulations. Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 252, 301–306 (1998)

    Article  Google Scholar 

  18. P. Buffat, J.-P. Borel, Size effect on the melting temperature of gold particles. Phys. Rev. A 13, 2287–2298 (1976)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Support for this work by the US National Science Foundation under Grant No. CBET-0730143 is gratefully acknowledged. The authors thank the University of Missouri Bioinformatics Consortium (UMBC) for providing supercomputing time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuwen Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Gan, Y., Zhang, Y. et al. Molecular dynamics simulation of neck growth in laser sintering of different-sized gold nanoparticles under different heating rates. Appl. Phys. A 106, 725–735 (2012). https://doi.org/10.1007/s00339-011-6680-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6680-x

Keywords

Navigation