Skip to main content
Log in

Enhanced magneto-optic activity of magnetite-based ferrofluids subjected to gamma irradiation

  • Published:
Applied Physics A Aims and scope Submit manuscript

A Publisher’s Erratum to this article was published on 14 December 2011

Abstract

We report here the effect of γ-irradiation on the particle size and size distribution dependent spectroscopic and magneto-optic properties of ferrofluids, synthesized by a co-precipitation method. The X-ray diffraction (XRD) study exhibits magnetite (Fe3O4) phase of the particles while electron microscopic and dynamic light scattering (DLS) studies have predicted particle growth upon γ-irradiation. Further, Fourier transform infrared (FT-IR) spectroscopy studies ensured that no dissociation has occurred due to irradiation effect. As a consequence of magneto-optic behavior reflected in the Faraday rotation (FR) measurement, the Verdet constant increased from a value of 0.64×10−2 for the pristine sample to 5.6×10−2 deg/Gauss-cm for the sample irradiated with the highest dose (2.635 kGy). The substantial enhancement in the FR is assigned to the improvement in associated chaining effect owing to adequate particle growth where an increased stoichiometry variation of Fe2+/Fe3+ is assured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5a
Fig. 5b
Fig. 5c
Fig. 5d

Similar content being viewed by others

References

  1. C. Scherrer, A.M.F. Neto, Braz. J. Phys. 35, 718 (2005)

    Article  Google Scholar 

  2. H. Rahn, I.G. Morilla, R. Jurgons, C. Alexiou, S. Odenbach, J. Phys., Condens. Matter 20, 204152 (2008)

    Article  ADS  Google Scholar 

  3. E. Munnier, S.C. Jonathan, C. Linassier, L.D. Eyrolles, H. Marchais, M. Soucé, K. Hervé, P. Dubois, I. Chourpa, Int. J. Pharmacol. 363, 170 (2008)

    Article  Google Scholar 

  4. D.Y. Ju, P. Bian, M. Nakano, H. Matsuura, K. Makino, N. Noda, K. Koide, T. Nemoto, Mater. Sci. Forum 614, 229 (2009)

    Article  Google Scholar 

  5. R. Ravaud, M. Pinho, G. Lemarquand, N. Dauchez, J.M. Genevaux, V. Lemarquand, B. Brouard, IEEE Trans. Magn. 45, 4388 (2009)

    Article  ADS  Google Scholar 

  6. T.H. Mihail, US Patent Application 20100084586 Kind Code: A1, 2010

  7. S.S. Nair, J. Thomas, C.S.S. Sandeep, M.R. Anantharaman, R. Philip, Appl. Phys. Lett. 92, 171908 (2008)

    Article  ADS  Google Scholar 

  8. H.W. Davies, J.P. Llewellyn, J. Phys. D, Appl. Phys. 13, 2327 (1980)

    Article  ADS  Google Scholar 

  9. N.A. Yusuf, A.A. Rousan, H.M.E. Ghanem, J. Magn. Magn. Mater. 65, 282 (1987)

    Article  ADS  Google Scholar 

  10. N.A. Yusuf, I. Abu-Aljarayesh, A.A. Rousan, H.M. El-Ghanem, IEEE Trans. Magn. 36, 2852 (1990)

    Article  ADS  Google Scholar 

  11. C.P. Pang, C.T. Hsieh, J.T. Lue, J. Phys. D, Appl. Phys. 36, 1764 (2003)

    Article  ADS  Google Scholar 

  12. D. Jamon, F. Donatini, A. Siblini, F. Royer, R. Perzynsk, V. Cabuil, S. Neveu, J. Magn. Magn. Mater. 321, 1148 (2009)

    Article  ADS  Google Scholar 

  13. E.S. Kooij, A.C. Gâlcī, B. Poelsema, J. Colloid Interface Sci. 304, 261 (2006)

    Article  Google Scholar 

  14. E.D. López, Astrophys. J. 641, 710 (2006)

    Article  ADS  Google Scholar 

  15. L. Jun, S. Hao, D.Y. Dong, Chin. Phys. Lett. 27, 038104 (2010)

    Article  ADS  Google Scholar 

  16. Y.S. Kang, S. Risbud, J.F. Rabolt, P. Stroeve, Chem. Mater. 8, 2209 (1996)

    Article  Google Scholar 

  17. L. Zhang, Y. Zhang, J. Magn. Magn. Mater. 321, L15 (2009)

    Article  ADS  Google Scholar 

  18. R.Y. Hong, T.T. Pan, Y.P. Han, H.Z. Li, J. Ding, S. Han, J. Magn. Magn. Mater. 310, 37 (2007)

    Article  ADS  Google Scholar 

  19. X.D. Zhou, W. Huebner, Appl. Phys. Lett. 79, 3512 (2001)

    Article  ADS  Google Scholar 

  20. S.M.E. Sayed, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 225, 535 (2004)

    Article  ADS  Google Scholar 

  21. U. Schwertmann, R.M. Cornell, Iron Oxide in the Laboratory Preparation and Characterization (Cambridge University Press, New York, 1991)

    Google Scholar 

  22. H.S. Bennett, E.A. Stern, Phys. Rev. 137, A448 (1965)

    Article  ADS  Google Scholar 

  23. P.K. Jain, Y. Xiao, R. Walsworth, A.E. Cohen, Nano Lett. 9, 1644 (2009)

    Article  ADS  Google Scholar 

  24. A.A. Rousan, H.M. El-Ghanem, N.A. Yusuf, IEEE Trans. Magn. 24, 1653 (1988)

    Article  ADS  Google Scholar 

  25. M.M. Maiorov, J. Magn. Magn. Mater. 252, 111 (2002)

    Article  ADS  Google Scholar 

  26. N. Misra, M. Roy, D. Mohanta, K.K. Baruah, A. Choudhury, Cent. Eur. J. Phys. 6, 109 (2008)

    Article  Google Scholar 

  27. A.A. Rousan, H.M. El-Ghanem, N.A. Yusuf, IEEE Trans. Magn. 25, 3121 (1989)

    Article  ADS  Google Scholar 

  28. A. Schlegel, S.F. Alvarado, P. Wachter, J. Phys. C, Solid State Phys. 12, 1157 (1979)

    Article  ADS  Google Scholar 

  29. K.H. Choi, S.H. Lee, Y.R. Kim, L. Malkinski, A. Vovk, Y. Barnakov, J.H. Park, Y.K. Jung, J.S. Jung, J. Magn. Magn. Mater. 310, e861 (2007)

    Article  ADS  Google Scholar 

  30. D. Shi, B. Aktas, L. Pust, F. Mikailov (eds.), Nanostructured Magnetic Materials and Their Applications (Springer, Berlin, 2002)

    Google Scholar 

  31. D. Caruntu, G. Caruntu, C.J. O’Connor, J. Phys. D, Appl. Phys. 40, 5801 (2007)

    Article  ADS  Google Scholar 

  32. M. Devi, N. Paul, D. Mohanta, A. Saha, J. Exp. Nanosci. (2011). doi:10.1080/17458080.2010.548408

  33. J.M. Laskar, J. Philip, B. Raj, Phys. Rev. E 80, 041401 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge UGC, New Delhi, for the financial support received under major project scheme No. 37-367/2009 (SR). The association of Ms. Nibedita Paul, RS, is acknowledged. We extend our sincere thanks to Dr. A. Dutta, UGC-DAE, CSR, Kolkata, for her help during γ-irradiation and DLS study. We are also thankful to SAIF, NEHU, Shillong, for extending TEM Facility. The FT-IR facility provided by the Department of Chemical Sciences, TU, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dambarudhar Mohanta.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00339-011-6723-3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devi, M., Das, R., Mohanta, D. et al. Enhanced magneto-optic activity of magnetite-based ferrofluids subjected to gamma irradiation. Appl. Phys. A 106, 757–763 (2012). https://doi.org/10.1007/s00339-011-6678-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6678-4

Keywords

Navigation