Skip to main content
Log in

Cost-effective fabrication of memristive devices with ZnO thin film using printed electronics technologies

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A prototype memristive device has been presented in this paper, for which the top and bottom electrodes have been fabricated through a simple and cost-effective technique, i.e. electrohydrodynamic printing. For deposition of the bottom electrode pattern, a silver ink containing 60 wt% silver by content was subjected to controlled flow through a metal capillary exposed to an electric field at the ambient temperature to generate an electrohydrodynamic jet, thereby depositing uniform patterns of silver on glass substrate at a constant substrate speed. The top electrode has been deposited in a similar fashion. In between the top and bottom electrodes, a uniform layer of ZnO is fabricated using spin-coating technique. The nanoscale ZnO memristor stack has a channel length of 370 μm and channel width of 82 μm. A memristor thus fabricated was characterized and its current voltage curves were analyzed. The device showed a typical nonvolatile resistive switching behavior present in memristor devices thus highlighting the EHD printed patterning as a reliable method for the fabrication of memory devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Prodromakis, C. Toumazou, in IEEE Conf. (2010)

    Google Scholar 

  2. B. Linares-Barranco, T. Serrano-Gotarredona, Nat. Prec. hdl:10101/npre.2009.3010.1 (2009)

    Google Scholar 

  3. L.O. Chua, Cellular Nanoscale Sensory Wave Computing (Springer, New York, 1996)

    Google Scholar 

  4. J. Hutchinson, C. Koch, J. Luo, C. Mead, Computer 21, 52 (1988)

    Article  Google Scholar 

  5. L.O. Chua, IEEE Trans. Circuit Theory 18, 507 (1971)

    Article  Google Scholar 

  6. D.G. Strukov, G.S. Snider, D.R. Stewart, S.R. Williams, Nature 453, 80 (2008)

    Article  ADS  Google Scholar 

  7. J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. William, Nat. Nanotechnol. 3, 429 (2008)

    Article  Google Scholar 

  8. N. Gergel-Hackett, L. Stephey, B. Dunlap, B.H. Hamadani, D.J. Gundlach, C.A. Richter, IEEE Electron Device Lett. 30, 706 (2009)

    Article  ADS  Google Scholar 

  9. T. Mikolajick, M. Salinga, M. Kund, T. Kever, Adv. Eng. Mater. 11, 235 (2009)

    Article  Google Scholar 

  10. V. Erokhin, T. Berzina, A. Smerieri, P. Camorani, S. Erokhina, M.P. Fontana, Nano Commun. Netw. 1, 108 (2010)

    Article  Google Scholar 

  11. H.Y. Jeong, J.Y. Kim, J.W. Kim, J.O. Hwang, J. Kim, J.Y. Lee, T.H. Yoon, B.J. Cho, S.O. Kim, S. Ruoff, S.Y. Choi, Nano Lett. 10, 4381 (2010)

    Article  ADS  Google Scholar 

  12. A.A. Zakhidov, B. Jung, Jason D. Slinker, H.D. Abruna, G.G. Malliaras, Org. Electron. 11, 150 (2010)

    Article  Google Scholar 

  13. P.J. Kuekes, G.S. Snider, R.S. Williams, Sci. Am. 293, 72 (2005)

    Article  ADS  Google Scholar 

  14. G. Jung, E.J. Halperin, W. Wu, Z. Yu, S. Wangs, W.M. Tong et al., Nano Lett. 6, 351 (2006)

    Article  ADS  Google Scholar 

  15. Q.F. Xia, J.J. Yang, W. Wu, X. Li, R.S. Williams, Nano Lett. 10, 2909 (2010)

    Article  ADS  Google Scholar 

  16. W. Lu, K.H. Kim, T. Chang, S. Gaba, in ASP-DAC 11 Conf. (2011), p. 217

    Google Scholar 

  17. F. Verbakel, S.C.J. Mesker, R.A.J. Janssen, J. Appl. Phys. 102, 083701 (2007)

    Article  ADS  Google Scholar 

  18. J. Wang, B. Sun, F. Gao, N.C. Greenham, Phys. Status Solidi A 207, 484 (2010)

    Article  ADS  Google Scholar 

  19. G.I. Taylor, Sci. Am. 280, 383 (1964)

    MATH  Google Scholar 

  20. J. Zeleny, Phys. Rev. 3, 69 (1914)

    Article  ADS  Google Scholar 

  21. M. Cloupeau, B. Prunetfoch, J. Electrost. 25, 165 (1990)

    Article  Google Scholar 

  22. A. Khan, K. Rahman, M.-T. Hyun, D.-S. Kim, K.-H. Choi, Appl. Phys. A, Mater. Sci. Process. doi:10.1007/s00339-011-6386-0 (2011)

    Google Scholar 

  23. N.M. Muhammad, S. Sundharam, H.W. Dang, A. Lee, B.H. Ryu, K.H. Choi, Curr. Appl. Phys. 11, S68 (2011)

    Article  ADS  Google Scholar 

  24. K.H. Choi, S. Khan, H.W. Dang, Y.H. Doh, S.J. Hong, Jpn. J. Appl. Phys. 49 (2010)

  25. S.R. Forrest, Nature 428, 911 (2004)

    Article  ADS  Google Scholar 

  26. R.D. Piner, J. Zhu, F. Xu, S. Hong, C.A. Mirkin, Science 283, 661 (1999)

    Article  Google Scholar 

  27. S.K. Saha, M.L. Culpepper, J. Manuf. Sci. Eng. 133, 041005 (2011)

    Article  Google Scholar 

  28. F. Huo, Z. Zheng, G. Zheng, L.R. Giam, H. Zhang, C.A. Mirkin, Science 321, 1658 (2008)

    Article  ADS  Google Scholar 

  29. K. Salaita, S.W. Lee, X. Wang, L. Huang, T.M. Dellinger, C. Liu, C.A. Mirkin, Small 1, 940 (2005)

    Article  Google Scholar 

  30. P. Calvert, Chem. Mater. 13, 3299 (2001)

    Article  Google Scholar 

  31. H.P. Le, J. Imaging Sci. Technol. 42, 49 (1998)

    Google Scholar 

  32. J.M. Kay, R.M. Nedderman, Fluid Mechanics and Transfer Processes (Cambridge University Press, Cambridge, 1985)

    MATH  Google Scholar 

  33. J. de Gans, P.C. Duineveld, U.S. Schubert, Adv. Mater. 16, 203 (2004)

    Article  Google Scholar 

  34. R. Parashkov, E. Becker, T. Riedl, H.H. Johannes, W. Kowalsky, Proc. IEEE 93, 1321 (2005)

    Article  Google Scholar 

  35. H.F. Poon, 165, Ph.D. Thesis, Department of Chemical Engineering, Princeton University (2002)

  36. T. Niizeki, K. Maekawa, M. Mita, K. Yamasaki, Y. Matsuba, N. Terada, H. Saito, in IEEE Conf. (2008), p. 1745

    Google Scholar 

  37. C.L. He, F. Zhuge, X.F. Zhou, M. Li, G.C. Zhou, Y.W. Liu, J.Z. Wang, B. Chen, W.J. Su et al., Appl. Phys. Lett. 95, 161108 (2009). doi:10.1063/1.3253713

    Article  Google Scholar 

  38. Y. Jin, J. Wang, B. Sun, J.C. Blakesley, N.C. Greenham, Nano Lett. 8, 1649 (2008)

    Article  ADS  Google Scholar 

  39. F. Zhuge, B. Hu, C. He, X. Zhou, Z. Liuz, R.W. Li, Carbon 49, 3796 (2011)

    Article  Google Scholar 

  40. Y.T. Li, S.B. Long, M.H. Zhang, Q. Li, L.B. Shao, S. Zhang, Y. Wang, Q.Y. Quo, S. Liu, M. Liu, IEEE Electron Device Lett. 31, 117 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0026163)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Hyun Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, K.H., Mustafa, M., Rahman, K. et al. Cost-effective fabrication of memristive devices with ZnO thin film using printed electronics technologies. Appl. Phys. A 106, 165–170 (2012). https://doi.org/10.1007/s00339-011-6670-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6670-z

Keywords

Navigation