Skip to main content
Log in

Structural and electronic properties of GaN x As1−x alloys

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The structural and electronic properties of cubic GaN x As1−x with N-concentration varying between 0.0 and 1.0 with step of 0.25 were investigated using the full potential–linearized augmented plane wave (FP-LAPW) method. We have used the local density approximation (LDA) and the generalized gradient approximation (GGA) for the exchange and correlation potential. In addition the Engel-Vosko generalized gradient approximation (EVGGA) was used for the band-structure calculations. The structural properties of the binary and ternary alloys were investigated. The electronic band structure, total and partial density of states as well as the electron charge density were determined for both the binary and their related ternary alloys. The energy gap of the alloys decreases when we move from x=0.0 to 0.25; then it increases by a factor of about 1.8 when we move from 0.25 to 0.5, 0.75 and 1.0 using EVGGA. For both LDA and GGA moving from x=0.0 to 0.25 causes the band gap to close, showing the metallic nature of the GaN0.25As0.75 alloy. When the composition of N moves through x=0.25, 0.5, 0.75 and 1, the band gap increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.W. Orton, C.T. Foxon, Rep. Prog. Phys. 61, 1 (1998)

    Article  ADS  Google Scholar 

  2. S.C. Jain, M. Willander, J. Narayan, R. Van Overstraeten, J. Appl. Phys. 87, 965 (2000)

    Article  ADS  Google Scholar 

  3. I. Vurgaftman, J.R. Meyer, J. Appl. Phys. 94, 3675 (2003)

    Article  ADS  Google Scholar 

  4. H.P. Xin, C.W. Tu, Appl. Phys. Lett. 72, 2442 (1998)

    Article  ADS  Google Scholar 

  5. W. Shan, W. Walukiewicz, J.W. Ager III, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz, Phys. Rev. Lett. 82, 1221 (1999)

    Article  ADS  Google Scholar 

  6. M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, Y. Yazawa, Jpn. J. Appl. Phys. 35, 1273 (1996)

    Article  ADS  Google Scholar 

  7. T. Kitatani, K. Nakahara, M. Kondow, K. Uomi, T. Tanaka, Jpn. J. Appl. Phys. 39, 86 (2000)

    Article  ADS  Google Scholar 

  8. M. Bissiri, V. Gaspari, A. Polimeni, G. Baldassarri Hoger von Hogersthal, M. Capizzi, A. Frova, Appl. Phys. Lett. 79, 2585 (2001)

    Article  ADS  Google Scholar 

  9. M. Weyers, M. Sato, H. Ando, Jpn. J. Appl. Phys. 31, L853 (1992)

    Article  ADS  Google Scholar 

  10. M. Kondow, K. Uomi, K. Hosomi, T. Mozume, Jpn. J. Appl. Phys. Part 2 33, L1056 (1994)

    Article  Google Scholar 

  11. S. Sakai, Y. Ueta, Y. Terauchi, Jpn. Appl. Lett. 32, 4413 (1993)

    Article  ADS  Google Scholar 

  12. W. Shan, W. Walukiewicz, J.W. Ager III, E.E. Haller, J.F. Geisz, D.J. Friedman, J.M. Olson, S.R. Kurtz, Phys. Rev. Lett. 82, 1221 (1999)

    Article  ADS  Google Scholar 

  13. Y. Zhang, A. Mascarenhas, J.F. Geisz, H.P. Xin, C.W. Tu, Phys. Rev. B 63, 085205 (2001)

    Article  ADS  Google Scholar 

  14. U. Tisch, E. Finkman, J. Salzman, Appl. Phys. Lett. 81, 463 (2002)

    Article  ADS  Google Scholar 

  15. A. Zunger, S.-H. Wei, L.G. Feireira, J.E. Bernard, Phys. Rev. Lett. 65, 353 (1990)

    Article  ADS  Google Scholar 

  16. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K. Techn. Universitat, Wien, Austria (ISBN 3-9501031-1-1-2) (2001)

  17. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  Google Scholar 

  18. J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  19. E. Engel, S.H. Vosko, Phys. Rev. B 47, 13164 (1993)

    Article  ADS  Google Scholar 

  20. P. Dufek, P. Blaha, K. Schwarz, Phys. Rev. B 50, 7279 (1994)

    Article  ADS  Google Scholar 

  21. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. R.C. Weast, Handbook of Chemistry and Physics (CRC, Boca Raton, 1981)

    Google Scholar 

  23. M.L. Cohen, T.K. Bergstresser, Phys. Rev. 141, 789 (1966)

    Article  ADS  Google Scholar 

  24. S. Froyen, M.L. Cohen, Phys. Rev. B 28, 3258 (1983)

    Article  ADS  Google Scholar 

  25. T. Lei, T.D. Moustaka, R.J. Graham, Y. He, S.J. Berkowitz, J. Appl. Phys. 71, 4933 (1992). And references therein

    Article  ADS  Google Scholar 

  26. A. Rubio, J.L. Corkill, M.L. Cohenm, E.L. Shirley, S.G. Louie, Phys. Rev. B 48, 11810 (1993)

    Article  ADS  Google Scholar 

  27. P.K. Lam, M.L. Cohen, G. Martinez, Phys. Rev. B 35, 9190 (1987)

    Article  ADS  Google Scholar 

  28. Y. Al-Douri, H. Abid, H. Aourag, Physica B 305, 186 (2001)

    Article  ADS  Google Scholar 

  29. M.L. Cohen, Phys. Rev. B 32, 7988 (1985)

    Article  ADS  Google Scholar 

  30. N.E. Christensen, I. Gorczyca, Phys. Rev. B 50, 4397 (1994)

    Article  ADS  Google Scholar 

  31. P. Perlin, C. Jauberthi-Carillon, J.P. Itie, A. San Miguel, I. Grzegory, A. Polian, High Press. Res. 71, 96 (1991)

    Article  ADS  Google Scholar 

  32. A. Sheleg, V. Savastenko, Inorg. Mater. 15, 1257 (1979) (Transl. of Neorg. Mater.)

    Google Scholar 

  33. Y. Al-Douri, H. Abid, H. Aourag, Physica B 322, 179 (2002)

    Article  ADS  Google Scholar 

  34. L. Vegard, Z. Phys. 5, 17 (1921)

    Article  ADS  Google Scholar 

  35. B. Jobst, D. Hommel, U. Lunz, T. Gerhard, G. Landwehr, Appl. Phys. Lett. 69, 97 (1996)

    Article  ADS  Google Scholar 

  36. J.P. Dismuckes, L. Ekstrom, R.J. Poff, J. Phys. Chem. 68, 3021 (1964)

    Article  Google Scholar 

  37. Z. Charifi, N. Bouarissa, Phys. Lett. A 234, 493 (1997)

    Article  ADS  Google Scholar 

  38. F. El Haj Hassan, H. Akdarzadeh, Mater. Sci. Eng. B 121, 170 (2005)

    Article  Google Scholar 

  39. F. El Haj Hassan, Phys. Status Solidi b 242, 909 (2005)

    Article  ADS  Google Scholar 

  40. Z. Charifi, F. El Haj Hassan, H. Baaziz, Sh. Khosravizadeh, S.J. Hashemifar, H. Akbarzadeh, J. Phys., Condens. Matter 17, 7077 (2005)

    Article  ADS  Google Scholar 

  41. D.E. Aspnes, C.G. Olson, D.W. Lynch, Phys. Rev. Lett. 37, 766 (1976)

    Article  ADS  Google Scholar 

  42. T.-C. Chiang, J.A. Knapp, M. Aaono, D.E. Eastman, Phys. Rev. B 21, 3513 (1980)

    Article  ADS  Google Scholar 

  43. N. Bouarissa, R. Bachiri, Z. Charifi, Phys. Status Solidi b 226, 293 (2001)

    Article  ADS  Google Scholar 

  44. W.J. Fan, M.F. Li, T.C. Chong, X.B. Xia, J. Appl. Phys. 79, 188 (1996)

    Article  ADS  Google Scholar 

  45. P.E. Van Camp, V.F. Van Doren, J.T. Devreese, Phys. Rev. B 44, 9056 (1991)

    Article  ADS  Google Scholar 

  46. P.E. Van Camp, V.F. Van Doren, J.T. Devreese, Solid State Commun. 81, 23 (1992)

    Article  Google Scholar 

  47. B.J. Min, C.T. Chan, K.M. Ho, Phys. Rev. B 45, 1159 (1992)

    Article  ADS  Google Scholar 

  48. M. Palumno, C.M. Bertoni, L. Reining, F. Finochi, Physica B 185, 404 (1993)

    Article  ADS  Google Scholar 

  49. V. Fiorentini, M. Methfessel, M. Scheffler, Phys. Rev. B 47, 13353 (1993)

    Article  ADS  Google Scholar 

  50. Y. Al-Douri, J. Appl. Phys. 93, 9730 (2003)

    Article  ADS  Google Scholar 

  51. A. Zaoui, M. Ferhat, B. Khelifa, J.P. Dufour, H. Aourag, Phys. Status Solidi b 185, 163 (1994)

    Article  ADS  Google Scholar 

  52. S. Sakai, Y. Ueta, Y. Terauchi, Jpn. J. Appl. Phys. 32, 4413 (1993)

    Article  ADS  Google Scholar 

  53. A. Rubio, M.L. Cohen, Phys. Rev. B 51, 4343 (1995)

    Article  ADS  Google Scholar 

  54. J. Neugebauer, C.G. Van de Walle, Phys. Rev. B 51, 10568 (1995)

    Article  ADS  Google Scholar 

  55. S.-H. Wei, A. Zunger, Phys. Rev. Lett. 76, 664 (1996)

    Article  ADS  Google Scholar 

  56. L. Ballaiche, S.-H. Wei, A. Zunger, Phys. Rev. B 54, 17568 (1996)

    Article  ADS  Google Scholar 

  57. J.A. Van Vechten, Phys. Rev. 182, 891 (1969)

    Article  ADS  Google Scholar 

  58. D.P. Munich, R.F. Pierret, Solid-State Electron. 30, 901 (1987)

    Article  ADS  Google Scholar 

  59. M. Weyers, M. Sato, H. Ando, Jpn. J. Appl. Phys. 31, L853 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Z.C, H.B and B.H would like to acknowledge Max-Planck institute for the financial support. For the author Ali Hussain Reshak this work was supported from the program RDI of the Czech Republic, the project CENAKVA (No. 1.05/2.1.00/01.0024), the grant No. 152/2010/Z of the Grant Agency of the University of South Bohemia. School of Material Engineering, Malaysia University of Perlis, P.O. Box 77, d/a Pejabat Pos Besar, 01007 Kangar, Perlis, Malaysia. Y.A. work was supported from FRGS grants numbered: 9003-00249 & 9003-00255, and the author would like to acknowledge TWAS-Italy and JUST-Jordan for their financial and technical supports, respectively, within his scientific visit under TWAS UNESCO Associateship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Hussain Reshak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baaziz, H., Charifi, Z., Reshak, A.H. et al. Structural and electronic properties of GaN x As1−x alloys. Appl. Phys. A 106, 687–696 (2012). https://doi.org/10.1007/s00339-011-6666-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6666-8

Keywords

Navigation