Skip to main content
Log in

Correlation between implantation defects and dopants in Fe-implanted SiC

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

SiC single crystals were implanted with Fe ions and the effects of implantation temperature, Fe concentration, and subsequent swift heavy ion irradiation on both dopant and damage depth distributions were evaluated by using RBS and channelling techniques. It is found that an increase of the implantation temperature above the threshold temperature for amorphization can lead to the formation of a broad layer (∼50 nm) containing a large concentration of implanted Fe atoms (∼2 at.%) but almost free of implantation defects. This particular configuration is likely due to dynamic annealing during implantation combined with defect annihilation at the surface. It is only observed when the implanted species concentration does not exceed a critical value (which lies between 2 and 5 at.% in the present system). Post-implantation swift heavy ion irradiation leads to a further decrease of the damage level, while the Fe distribution is not affected. The Fe substitutional fraction has been evaluated in the different tested conditions. A maximum value of ∼50% is found when implantation is performed at the temperature above that required to prevent amorphization (470 K in the present system). Swift-heavy ion irradiation seems to induce Fe atoms relocation at substitutional positions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Schulz, Appl. Phys. 4, 91 (1974)

    Article  ADS  Google Scholar 

  2. H. Sonntag, S. Kalbitzer, Appl. Phys. A 61, 363 (1995)

    Article  ADS  Google Scholar 

  3. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Science 287, 1019 (2000)

    Article  ADS  Google Scholar 

  4. S.J. Pearton, Y.D. Park, C.R. Abernathy, M.E. Overberg, G.T. Thaler, J. Kim, F. Ren, J.M. Zavada, R.G. Wilson, Thin Solid Films 447–448, 493 (2004)

    Article  Google Scholar 

  5. F. Stromberg, W. Keune, X. Chen, S. Bedanta, H. Reuther, A. Mücklich, J. Phys., Condens. Matter 18, 9881 (2006)

    Article  ADS  Google Scholar 

  6. B. Song, H. Bao, H. Li, M. Lei, J. Jian, J. Han, X. Zhang, S. Meng, W. Wang, X. Chen, Appl. Phys. Lett. 94, 102508 (2009)

    Article  ADS  Google Scholar 

  7. A. Los, V. Los, A. Timoshevskii, J. Electron. Mater. 39, 545 (2010)

    Article  ADS  Google Scholar 

  8. Y. Shi, Y.X. Zhang, C.Z. Jiang, D.J. Fu, X.J. Fan, Phys. Rev. B, Condens. Matter 388, 82 (2007)

    Article  ADS  Google Scholar 

  9. A. Declémy, C. Dupeyrat, L. Thomé, A. Debelle, Mater. Sci. Forum 615–617, 461 (2009)

    Article  Google Scholar 

  10. C. Dupeyrat, A. Declémy, M. Drouet, D. Eyidi, L. Thomé, A. Debelle, M. Viret, F. Ottd, Phys. Rev. B, Condens. Matter 404, 4731 (2009)

    Article  ADS  Google Scholar 

  11. M.K. Linnarsson, A. Hallén, Nucl. Instrum. Methods B. doi:10.1016/j.nimb.2011.07.056

  12. C.J. McHargue, J.M. Williams, Nucl. Instrum. Methods 80/81, 889 (1993)

    Article  Google Scholar 

  13. S.J. Zinkle, L.L. Snead, Nucl. Instrum. Methods 116, 92 (1996)

    Article  Google Scholar 

  14. M.G. Grimaldi, L. Calcagno, P. Musumeci, N. Frangis, J. Van Landuyt, J. Appl. Phys. 81, 7181 (1997)

    Article  ADS  Google Scholar 

  15. Y. Zhang, W.J. Weber, W. Jiang, A. Hallen, G. Possnert, J. Appl. Phys. 91, 6388 (2002)

    Article  ADS  Google Scholar 

  16. A. Gentils, M.-F. Barthe, L. Thomé, M. Behar, Appl. Surf. Sci. 255, 78 (2008)

    Article  ADS  Google Scholar 

  17. W.J. Weber, L. Wang, Y. Zhang, W. Jiang, I.-T. Bae, Nucl. Instrum. Methods 266, 2793 (2008)

    Article  Google Scholar 

  18. E. Wendler, Th. Bierschenk, W. Wesch, E. Friedland, J.B. Malherbe, Nucl. Instrum. Methods 268, 2996 (2010)

    Article  Google Scholar 

  19. W. Jiang, W.J. Weber, Y. Zhang, S. Thevuthasan, V. Sutthanandan, Nucl. Instrum. Methods 207, 92 (2003)

    Article  Google Scholar 

  20. A. Benyagoub, A. Audren, L. Thomé, F. Garrido, Appl. Phys. Lett. 89, 241914 (2006)

    Article  ADS  Google Scholar 

  21. L. Nowicki, A. Turos, R. Ratajczak, A. Stonert, F. Garrido, Nucl. Instrum. Methods 240, 277 (2005)

    Article  Google Scholar 

  22. M. Mayer, SIMNRA User’s Guide, Report IPP 9/113, Max-Planck-Institut fur Plasmaphysik, Garching, Germany (1997), http://www.rzg.mpg.de/~mam/

  23. W. Wesch, A. Heft, E. Wendfer, T. Bachmann, E. Glaser, Nucl. Instrum. Methods 96, 335 (1995)

    Article  Google Scholar 

  24. A. Heft, E. Wendler, J. Heindl, T. Bachmann, E. Glaser, H.P. Strunk, W. Wesch, Nucl. Instrum. Methods 113, 239 (1996)

    Article  Google Scholar 

  25. C. Dupeyrat, A. Declémy, M. Drouet, A. Debelle, L. Thomé, Nucl. Instrum. Methods 268, 2863 (2010)

    Article  Google Scholar 

  26. A. Audren, A. Benyagoub, L. Thome, F. Garrido, Nucl. Instrum. Methods 266, 2810 (2008)

    Article  Google Scholar 

  27. F. Seitz, J.S. Koehler, Solid State Phys. 2, 305 (1956)

    Google Scholar 

  28. V.L. Shaposhnikov, N.A. Sobolev, J. Phys., Condens. Matter 16, 1761 (2004)

    Article  ADS  Google Scholar 

  29. L.C. Feldman, J.W. Mayer, S.T. Picraux, Materials Analysis by Ion Channeling (Academic Press, New York, 1982), p. 59

    Google Scholar 

  30. W. Wesch, A. Heft, J. Heindl, H.P. Strunk, T. Bachmann, E. Glaser, E. Wendler, Nucl. Instrum. Methods 106, 339 (1995)

    Article  Google Scholar 

  31. A. Turos, A. Azzam, M.K. Kloska, O. Meyer, Nucl. Instrum. Methods 19–20, 123 (1987)

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank Michel Drouet (Pprime Institute) for Fe implantations, and the SEMIRAMIS staff (CSNSM) for their assistance during RBS/C measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Debelle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Declémy, A., Debelle, A., Dupeyrat, C. et al. Correlation between implantation defects and dopants in Fe-implanted SiC. Appl. Phys. A 106, 679–685 (2012). https://doi.org/10.1007/s00339-011-6660-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6660-1

Keywords

Navigation