Skip to main content
Log in

Enhancement of zinc interstitials in ZnO nanotubes grown on glass substrate by the hydrothermal method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, high density well aligned ZnO nanotubes were grown on glass via a two-step growth-then-etching by simple and template-free hydrothermal method. We used etching procedure to introduce additional zinc interstitial defects in the ZnO nanotubes. The optical properties of the ZnO nanotubes have been investigated by depth-resolved cathodluminescence spectroscopy (DRCLS) which provides information about the physical origin and growth dependence of optically active defects together with their spatial distribution. The DRCLS study gives clear evidence about the enhancement of zinc interstitial defects which are responsible for the violet and decrease of the DL emission in ZnO nanotubes when compared to the as grown ZnO nanorods. We observed a variation in the zinc interstitials along the nanotube depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. R. Service, Science 281, 940 (1998)

    Article  Google Scholar 

  3. C.N.R. Rao, A. Govindaraj, Nanotubes and Nanowires (RSC, Cambridge, 2005)

    Google Scholar 

  4. X. Gan, X. Li, X. Gao, W. Yu, J. Alloys Compd. 481, 397 (2009)

    Article  Google Scholar 

  5. G.I. Dovbeshko, O.P. Repnytska, E.D. Obraztsova, Y.V. Shtogun, Chem. Phys. Lett. 372, 432 (2003)

    Article  ADS  Google Scholar 

  6. S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Science 283, 512 (1999)

    Article  ADS  Google Scholar 

  7. M.S. Sander, M.J. Côté, W. Gu, B.M. Kile, C.P. Tripp, Adv. Mater. 16, 2052 (2004)

    Article  Google Scholar 

  8. K.M. Alam, A.K. Ray, Nanotechnology 18, 495706 (2007)

    Article  Google Scholar 

  9. A.M. Schwartzberg, T.Y. Olson, C.E. Talley, J.Z. Zhang, J. Phys. Chem. C 111, 16080 (2007)

    Article  Google Scholar 

  10. M. Willander, Y.E. Lozovik, Q.X. Zhao, O. Nur, Q.-H. Hu, P. Klason, Proc. SPIE 6486, 648614 (2007)

    Article  Google Scholar 

  11. J.Y. Lao, J.Y. Huang, D. Banerjee, S.H. Jo, D.Z. Wang, J.G. Wen, D. Steeves, B. Kimball, W. Porter, R.A. Farrer, T. Baldacchini, J.T. Fourkas, Z.F. Ren, Proc. SPIE 5219, 99 (2003)

    Article  ADS  Google Scholar 

  12. J. Yoo, Y.J. Hong, H.S. Jung, Y.J. Kim, C.H. Lee, J. Cho, Y.J. Doh, L.S. Dang, K.H. Park, G.C. Yi, Adv. Funct. Mater. 19, 1601 (2009)

    Article  Google Scholar 

  13. C. Wang, K. Yu, L. Li, Q. Li, Z. Zhu, Appl. Phys. A 90, 739 (2008)

    Article  ADS  Google Scholar 

  14. Y. Xi, J. Song, S. Xu, R. Yang, Z. Gao, C. Hu, Z.L. Wang, J. Mater. Chem. 19, 9260 (2009)

    Article  Google Scholar 

  15. C.S. Hsiao, S.Y. Chen, W.L. Kuo, C.C. Lin, S.Y. Cheng, Nanotechnology 19, 405608 (2008)

    Article  Google Scholar 

  16. M. Willander, O. Nur, Q.X. Zhao, L.L. Yang, M. Lorenz, B.Q. Cao, J.Z. Pérez, C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A.C. Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H.S. Kwack, J. Guinard, D. Le Si Dang, Nanotechnology 20, 332001 (2009)

    Article  Google Scholar 

  17. A.B. Djurišić, Y.H. Leung, Small 2, 944 (2006)

    Article  Google Scholar 

  18. L.J. Brillson, J. Vac. Sci. Technol. B 19, 1762 (2001)

    Article  Google Scholar 

  19. H. Guo, Z. Lin, Z. Feng, L. Lin, J. Zhou, J. Phys. Chem. C 113, 12546 (2009)

    Article  Google Scholar 

  20. C.H. Lee, Y. Hong, Y. Kim, J. Yoo, H. Baek, S. Jeon, S. Lee, G. Yi, IEEE J. Sel. Top. Quantum Electron. (2010)

  21. J. Elias, R. Tena-Zaera, G.Y. Wang, C.L. Clément, Chem. Mater. 20, 6633 (2008)

    Article  Google Scholar 

  22. N. Bano, I. Hussain, O. Nur, M. Willander, P. Klason, A. Henry, Semicond. Sci. Technol. 24, 125015 (2009)

    Article  ADS  Google Scholar 

  23. P. Klason, T.M. Børseth, Q.X. Zhao, B.G. Svensson, A.Yu. Kuznetsov, P.J. Bergman, M. Willander, Solid State Commun. 145, 321 (2008)

    Article  ADS  Google Scholar 

  24. A.B. Djurišić, Y.H. Leung, K.H. Tam, Y.F. Hsu, L. Ding, W.K. Ge, C. Zhong, K.S. Wong, W.K. Chan, H.L. Tam, K.W. Cheah, W.M. Kwok, D.L. Phillips, Nanotechnology 18, 095702 (2007)

    Article  ADS  Google Scholar 

  25. N. Bano, I. Hussain, O. Nur, M. Willander, Q. Wahab, A. Henry, H.S. Kwack, D. Le Si Dang, J. Lumin. 130, 963 (2010)

    Article  Google Scholar 

  26. T.E. Everhart, P.H. Hoff, J. Appl. Phys. 42, 5837 (1971)

    Article  ADS  Google Scholar 

  27. M.O. Young, M.L. Kyung, P.H. Kyung, K. Yongsun, Y.H. Ahn, P. Ji-Yong, L. Soonil, Nano Lett. 7, 3681 (2007)

    Article  ADS  Google Scholar 

  28. H.Q. Wang, G.Z. Wang, L.C. Jia, C.J. Tang, G.H. Li, J. Phys. D, Appl. Phys. 40, 6549 (2007)

    Article  ADS  Google Scholar 

  29. H. Noor, P. Klason, O. Nur, Q. Wahab, M. Asghar, M. Willander, J. Appl. Phys. 105, 123510 (2009)

    Article  ADS  Google Scholar 

  30. J. Bae, E.L. Shim, Y. Park, H. Kim, J.M. Kim, C.J. Kang, Y.J. Choi, Nanotechnology 22, 285711 (2011)

    Article  Google Scholar 

  31. J.R. Sadaf, M.Q. Israr, O. Nur, M. Willander, Y. Ding, Z.L. Wang, Nanoscale Res. Lett. 6, 513 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Soomro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soomro, M.Y., Hussain, I., Bano, N. et al. Enhancement of zinc interstitials in ZnO nanotubes grown on glass substrate by the hydrothermal method. Appl. Phys. A 106, 151–156 (2012). https://doi.org/10.1007/s00339-011-6658-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6658-8

Keywords

Navigation