Skip to main content
Log in

Nano-porous indium oxide transistor sensor for the detection of ethanol vapours at room temperature

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Porous indium oxide thin film prepared by the dip coating technique has been used in the construction of a field effect transistor. The coating solution was prepared from indium chloride precursor. The average particle size of the dip coated thin film was found to be 25 nm. Scanning electron microscopic images show the porous nature of the film, and the root mean square roughness of the film calculated using atomic force microscope was 24 nm. A transistor has been constructed by evaporating metal Aluminium as source and drain electrodes on the indium oxide active layer and employing the silicon substrate itself as a gate. The sensor response of the constructed transistor was tested with ethanol, ammonia and acetone vapours. The sensor showed good response to ethanol vapours even at 5-ppm level, and the time for response and recovery of the gas was nearly 1 min. Response to ammonia and acetone was comparatively poor. When the gate voltage was increased from 0 to 300 mV, a considerable increase in the source-drain current was observed. As the temperature of the sensing element increased, response to ethanol vapours also increased. There was nearly a linear variation in the transistor response for 100 ppm of ethanol vapours when the gate voltage was swept from 0 to 300 mV. The sensor response of the transistor increases with the gas concentration. The constructed transistor was found to be selectively sensitive to ethanol; therefore it can be implemented to work as a breath alcohol checker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Vygranenko, K. Wang, A. Nathan, Appl. Phys. Lett. 91, 263508 (2007)

    Article  ADS  Google Scholar 

  2. G. Golan, A. Axelevitch, B. Gorenstein, A. Peled, Appl. Surf. Sci. 253, 6608 (2007)

    Article  ADS  Google Scholar 

  3. M. Seetha, S. Bharathi, A. Dhayal Raj, D. Mangalaraj, D. Nataraj, Mater. Charact. 60, 1578 (2009)

    Article  Google Scholar 

  4. J. Androulakis, S. Gardelis, J. Giapintzakis, E. Gagaolidakis, G. Kiriakidis, Thin Solid Films 471, 293 (2005)

    Article  ADS  Google Scholar 

  5. H. Yamaura, T. Jinkawa, J. Tamaki, K. Moriya, N. Miura, N. Yamazoe, Sens. Actuators B 35–36, 325 (1996)

    Article  Google Scholar 

  6. M. Epifani, E. Comini, J. Arbiol, R. Diaz, N. Sergent, T. Pagnier, P. Siciliano, G. Faglia, J.R. Morante, Sens. Actuators B 130, 483 (2008)

    Article  Google Scholar 

  7. J.W. Fergus, Sens. Actuators B 121, 652 (2007)

    Article  Google Scholar 

  8. J. Xu, X. Wang, J. Shen, Sens. Actuators B 115, 642 (2006)

    Article  Google Scholar 

  9. D. Zhang, C. Li, X. Liu, S. Han, T. Tang, C. Zhou, Appl. Phys. Lett. 83, 1845 (2003)

    Article  ADS  Google Scholar 

  10. C. Xiang feng, W. Caihong, J. Dongli, Z. Chenmou, Chem. Phys. Lett. 399, 461 (2004)

    Article  ADS  Google Scholar 

  11. Ch.Y. Wang, M. Ali, Th. Kups, C.-C. Pohlig, V. Cimalla, Th. Stauden, O. Ambacher, Sens. Actuators B 130, 589 (2008)

    Article  Google Scholar 

  12. K. Kalyanasundaram, P.I. Gouma, IEEJ Trans. SM 126, 560 (2006)

    Article  Google Scholar 

  13. G. Neri, A. Bonavita, G. Micali, G. Rizzo, N. Pinna, M. Niederberger, J. Ba, Sens. Actuators B 130, 222 (2008)

    Article  Google Scholar 

  14. T. Seiyama (ed.), Chemical Sensor Technology, vol. 2 (Kodansa/Elsevier, Tokyo, 1989), pp. 59–70

    Google Scholar 

  15. M.E. Franke, T.J. Koplin, U. Simon, Small 2, 36 (2006)

    Article  Google Scholar 

  16. Y. Chen, C.L. Zhu, G. Xiao, Nanotechnology 17, 4537 (2006)

    Article  ADS  Google Scholar 

  17. P. Feng, T.H. Wang, Appl. Phys. Lett. 87, 213111 (2005)

    Article  ADS  Google Scholar 

  18. M. Ali, V. Cimalla, V. Lebedev, Th. Stauden, Ch. Wang, G. Ecke, V. Tilak, P. Sandvik, O. Ambacher, Sens. Actuators B 123, 779 (2007)

    Article  Google Scholar 

  19. M. Seetha, S. Bharathi, D. Mangalaraj, D. Nataraj, Thin Solid Films 518, e125 (2010)

    Article  ADS  Google Scholar 

  20. A. Moses Ezhil Raj, K.C. Lalithambika, V.S. Vidhya, G. Rajagopal, A. Thayumanavan, M. Jayachandran, C. Sanjeeviraja, Physica B 403, 544 (2008)

    Article  ADS  Google Scholar 

  21. R.K. Gupta, K. Ghosh, S.R. Mishra, P.K. Kahol, Mater. Lett. 62, 1033 (2008)

    Article  Google Scholar 

  22. Z. Zheng, K. Wang, Z. Zhang, J. Chen, W. Zhou, Nanotechnology 20, 045503 (2009)

    Article  ADS  Google Scholar 

  23. D.H. Zhang, Z.Q. Liu, C. Li, T. Tang, X.L. Liu, S. Han, B. Lei, C. Zhou, Nano Lett. 4, 1919 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. P. Meena, Associate Professor, PSGR Krishnammal College, Coimbatore, India, for the necessary grammar corrections in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Seetha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seetha, M., Mangalaraj, D. Nano-porous indium oxide transistor sensor for the detection of ethanol vapours at room temperature. Appl. Phys. A 106, 137–143 (2012). https://doi.org/10.1007/s00339-011-6655-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6655-y

Keywords

Navigation