Skip to main content
Log in

The application of electrical resistance measurements to water transport in lime–masonry systems

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The paper describes an experimental determination of impedance spectroscopy derived resistance measurements to record water transport in lime–masonry systems. It strongly supports the use of Sharp Front theory and Boltzmann’s distribution law of statistical thermodynamics to corroborate the data obtained. A novel approach is presented for the application of impedance measurements to the water transport between freshly mixed mortars and clay brick substrates. Once placed, fresh mortar is dewatered by brick and during this time the volume fraction water content of the mortar is reduced. An equation is derived relating this change in water content to the bulk resistance of the mortar. Experimental measurements on hydraulic lime mortars placed in contact with brick prisms confirm the theoretical predictions. Further, the results indicate the time at which dewatering of a mortar bed of given depth is completed. The technique has then potential to be applied for in situ monitoring of dewatering as a means of giving insight into the associated changes in mechanical and chemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

S :

sorptivity

R :

desorptivity

A :

transfer sorptivity

i :

cumulative volume of water desorbed per unit area of wet mix

t :

time

K c :

saturated permeability

Ψ i :

capillary potential

L c :

depth of filter cake

A sub :

area of fresh mix in contact with absorbent substrate

θ 0 :

initial volume fraction water in the mix

θ :

volume fraction of water in the filter cake at time t

N i and N j :

numbers of constituent ions i and j

E i and E j :

energies of states i and j

k :

Boltzmann’s constant (1.38041×10−23 J K−1)

T :

absolute temperature

φ :

electrical potential

e :

the electronic charge

z :

summary valence of the mobile ions in solution

ρ :

electrical resistivity

a and b :

empirical constants

R b :

resistance

References

  1. A. El-Turki, R.J. Ball, M.A. Carter, M.A. Wilson, C. Ince, G.C. Allen, Effect of dewatering on the strength of lime and cement mortars. J. Am. Ceram. Soc. 93(7), 2074–2081 (2010)

    Google Scholar 

  2. R.J. Ball, A. El-Turki, G.C. Allen, Influence of carbonation on the load dependent deformation of hydraulic lime mortars. Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 528(7–8), 3193–3199 (2011)

    Article  Google Scholar 

  3. C. Hall, W.D. Hoff, Water Transport in Brick and Concrete (Spon Press, London, 2002), pp. 29–56

    Book  Google Scholar 

  4. C. Ince, M.A. Carter, M.A. Wilson, N.C. Collier, A. El-Turki, R.J. Ball, G.C. Allen, Factors affecting the water retaining characteristics of lime and cement mortars in the freshly-mixed state. Mater. Struct. 44(2), 509–516 (2011)

    Article  Google Scholar 

  5. R.J. Ball, A. El-Turki, G.C. Allen, Influence of carbonation on the load dependent deformation of hydraulic lime mortars. Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 528(7–8), 3193–3199 (2011)

    Article  Google Scholar 

  6. G.C. Allen, J. Allen, N. Elton, M. Farey, S. Holmes, P. Livesey, M. Radonjic, Hydraulic Lime Mortar for Stone, Brick and Block Masonry (Donhead, Shaftesburg, 2003)

    Google Scholar 

  7. R.J. Ball, A. El-Turki, J. Allen, G.C. Allen, The stress cycling of hydraulic lime mortars. Const. Mat. Proc., Inst. Civ. Eng. 2, 57–63 (2007)

    Google Scholar 

  8. A. El-Turki, R.J. Ball, G.C. Allen, The influence of relative humidity on structural and chemical changes during carbonation of hydraulic lime. Cem. Concr. Res. 37, 1233–1240 (2007)

    Article  Google Scholar 

  9. W.J. McCarter, S. Garvin, N. Bouzid, Impedance measurements on cement pastes. J. Mater. Sci. Lett. 7, 1056–1057 (1988)

    Article  Google Scholar 

  10. W.J. McCarter, R. Brousseau, The AC response of a hardened cement paste. Cem. Concr. Res. 20(6), 891–900 (1990)

    Article  Google Scholar 

  11. W.J. McCarter, T.M. Chrisp, G. Starrs, The early hydration of alkali activated slag: developments in monitoring techniques. Cem. Concr. Compos. 21, 277–283 (1999)

    Article  Google Scholar 

  12. W.J. McCarter, G. Starrs, T.M. Chrisp, Electrical monitoring methods in cement science, in Structure and Performance of Cements, ed. by J. Benstead, P. Barnes (SPON, London, 2002)

    Google Scholar 

  13. B.J. Christensen, R.T. Coverdale, R.A. Olson, S.J. Ford, E.J. Garboczi, H.M. Jennings, T. Mason, Impedance spectroscopy of hydrating cement-based materials: measurement, interpretation, and application. J. Am. Ceram. Soc. 77, 2789–2804 (1994)

    Article  Google Scholar 

  14. R.J. Ball, G.C. Allen, G. Starrs, W.J. McCarter, Impedance spectroscopy measurements to study physio-chemical processes in lime-based composites. Appl. Phys. A, Mater. Sci. Process. (2011, forthcoming). doi:10.1007/s00339-011-6509-7

  15. C. Ince, Water transport kinetics in mortar–masonry systems, Ph.D. thesis, University of Manchester (2009)

  16. R.P. Ewing, A.G. Hunt, Dependence of the electrical conductivity on saturation in real porous media. Vadosc Zone J. 5, 731–741 (2006)

    Article  Google Scholar 

  17. F. Ozcep, O. Tezel, M. Asci, Correlation between electrical resistivity and soil-water content: Istanbul and Golcuk. Int. J. Phys. Sci. 4(6), 362–365 (2009)

    Google Scholar 

  18. F. Ozcep, E. Yıldırım, O. Tezel, M. Asci, S. Karabulut, Correlation between electrical resistivity and soil-water content based artificial intelligent techniques. Int. J. Phys. Sci. 5(1), 047–056 (2010)

    Google Scholar 

  19. S.I. Siddiqui, V.P. Drnevich, A New Method of Measuring Density and Moisture Content of Soil Using the Technique of Time Domain Reflectometry: Final Report (West Lafayette, Purdue University, 1995)

    Google Scholar 

  20. X. Yu, V.P. Drnevich, Soil water content and dry density by time domain reflectometry. J. Geotech. Geoenviron. Eng. 130(9), 922–934 (2004)

    Article  Google Scholar 

  21. C.M.K. Gardaner, T.J. Dean, J.D. Cooper, Soil water content measurement with a high-frequency capacitance sensor. J. Agric. Eng. Res. 71(4), 395–403 (1998)

    Article  Google Scholar 

  22. G.J. Cai, S.Y. Liu, L.Y. Tong, G.Y. Du, Resistivity cone penetration test technique and data interpretation. Chin. J. Rock Mech. Eng. 26, 3127–3133 (2007)

    Google Scholar 

  23. N.C. Collier, M.A. Wilson, M.A. Carter, W.D. Hoff, C. Hall, R.J. Ball, A. El-Turki, G.C. Allen, Theoretical development and validation of a Sharp Front model of the dewatering of a slurry by an absorbent substrate. J. Phys. D, Appl. Phys. 40, 4049–4054 (2007)

    Article  ADS  Google Scholar 

  24. S.S. Dukhin, B.V. Derjaguin, Electrokinetic Phenomena (Wiley, New York, 1974)

    Google Scholar 

  25. R.M. Besanson (ed.), The Encyclopedia of Physics (Van Nostrand-Reinhold, New York, 1974)

    Google Scholar 

  26. M. Tschapek, S. Falasca, Water retention by disperse hydrophilic materials as affected by surface tension. Powder Technol. 48(3), 223–226 (1986)

    Article  Google Scholar 

  27. D.R. Nielsen, J.W. Jackson, J.W. Cary, D.D. Evans (eds.), Soil Water. Chap. 6. Isothermal Flow of Aqueous Solutions (ASA/SSSA, Madison, 1972), p. 135

    Google Scholar 

  28. C. Hall, T.T. Kam-Ming, Water movement in porous building materials. VII. The sorptivity of mortars. Build. Environ. 21(2), 113–118 (1986)

    Article  Google Scholar 

  29. R.J. Ball, G.C. Allen, The measurement of water transport in porous materials using impedance spectroscopy. J. Phys. D, Appl. Phys. 43, 105503 (2010). doi:10.1088/0022-3727/43/10/105503

    Article  ADS  Google Scholar 

  30. C. Ince, M.A. Carter, M.A. Wilson, A. El-Turki, R.J. Ball, G.C. Allen, N.C. Collier, Analysis of the abstraction of water from freshly mixed jointing mortars in masonry construction. Mater. Struct. (2009). doi:10.1617/s11527-009-9560-5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Ball.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ball, R.J., Allen, G.C., Carter, M.A. et al. The application of electrical resistance measurements to water transport in lime–masonry systems. Appl. Phys. A 106, 669–677 (2012). https://doi.org/10.1007/s00339-011-6653-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6653-0

Keywords

Navigation