Skip to main content
Log in

Studying the luminescence efficiency of Lu2O3:Eu nanophosphor material for digital X-ray imaging applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Scintillator materials are widely used in X-ray medical imaging detector applications, coupled with available photoreceptors like radiographic film or photoreceptors suitable for digital imaging like a-Si, charge-coupled devises (CCD), complementary metal-oxide-semiconductors (CMOS) and GaAs). In addition, scintillators can be utilized in non-medical imaging detectors such as industrial detectors for non-destructive testing (NDT) and detectors used for security purposes (i.e. airport luggage control). Image quality and dose burden in the above applications is associated with the amount of optical photons escaping the scintillator as well as the amount of optical photons captured by the photoreceptor. The former is characterized by the scintillator efficiency and the latter by the spectral matching between the emission spectrum of the scintillator and the spectral response of the photoreceptor. Recently, a scintillator material, europium-activated lutetium oxide (Lu2O3:Eu), has shown improved scintillating properties. Lu2O3:Eu samples of compact nanocrystalline non-agglomerated powder were developed in our laboratory using homogeneous precipitation from a water-toluene solution in the presence of polyvinyl alcohol as a surfactant. In order to test their light-emission properties, experimental measurements under the excitation of X-ray spectra with X-ray tube voltages between 50 kVp and 140 kVp were performed. This range of applied voltages is appropriate for X-ray radiology, NDT and security applications. Lu2O3:Eu was evaluated with respect to output yield and spectral compatibility of digital imaging photoreceptors (CCD-based, CMOS-based, amorphous silicon a:Si flat panels, ES20 and GaAs). High light yield and spectral compatibility increase the performance of the medical detector and reduce the dose burden to the personnel involved. In addition a theoretical model was used to determine the values for the Lu2O3:Eu optical photon light propagation parameters. The inverse diffusion length was found to be equal to 33 cm2/g. In addition Lu2O3:Eu was found to match well with several photoreceptors capable of digital imaging (i.e. GaAs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. Rowlands, J. Yorkston, Flat panel detectors for digital radiography, in Handbook of Medical Imaging, ed. by J. Beutel, H.L. Kundel, R.L. Van Metter. Physics and Psychophysics, vol. 1 (SPIE Press, Bellingham, 2000), pp. 223–328

    Google Scholar 

  2. A. Del Guerra, Ionizing Radiation Detectors for Medical Imaging (World Scientific, Singapore, 2004). ISBN 9812386742

    Book  Google Scholar 

  3. M.J. Yaffe, J.A. Rowlands, Phys. Med. Biol. 42, 1 (1997)

    Article  Google Scholar 

  4. P. Liaparinos, I. Kandarakis, D. Cavouras, H. Delis, G. Panayiotakis, Med. Phys. 33, 4502 (2006)

    Article  Google Scholar 

  5. R.M. Nishikawa, M.J. Yaffe, Med. Phys. 17, 894 (1990)

    Article  Google Scholar 

  6. C. Michail, G. Fountos, P. Liaparinos, N. Kalyvas I. Valais, I. Kandarakis, G. Panayiotakis, Med. Phys. 37, 3694 (2010)

    Article  Google Scholar 

  7. N. Kalivas, I. Valais, D. Nikolopoulos, A. Konstantinidis, A. Gaitanis, D. Cavouras, C.D. Nomicos, G. Panayiotakis, I. Kandarakis, Appl. Phys. A 89, 443 (2007)

    Article  ADS  Google Scholar 

  8. P. Liaparinos, I. Kandarakis, Med. Phys. 36, 1985 (2009)

    Article  Google Scholar 

  9. E. Zych, A. Meijering, C. de Mello Donega, J. Phys., Condens. Matter 15, 5145 (2003)

    Article  ADS  Google Scholar 

  10. E. Zych, J. Trojan-Piegza, D. Hreniak, W. Strek, J. Appl. Phys. 94, 1318 (2003)

    Article  ADS  Google Scholar 

  11. A. Lempicki, C. Brecher, P. Szupryczynski, H. Lingertat, V.V. Nagarkar, S.V. Tipnis, S.R. Miller, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 488, 579 (2002)

    Article  ADS  Google Scholar 

  12. M. Nikl, Meas. Sci. Technol. 17, R37 (2006)

    Article  ADS  Google Scholar 

  13. V.V. Nagarkar, S.R. Miller, S.V. Tipnis, A. Lempicki, C. Brecher, H. Lingertat, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 213, 250 (2004)

    Article  ADS  Google Scholar 

  14. P. Magnan, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 504, 199 (2003)

    Article  ADS  Google Scholar 

  15. S.M. Gruner, M.W. Tate, E.F. Eikenberry, Rev. Sci. Instrum. 73, 2816 (2002)

    ADS  Google Scholar 

  16. R.H. Bartram, A. Lempicki, L.A. Kappers, D.S. Hamilton, J. Lumin. 106, 169 (2004)

    Article  Google Scholar 

  17. G. Blasse, J. Lumin. 60&61, 930 (1994)

    Article  Google Scholar 

  18. D. Cavouras, I. Kandarakis, D. Nikolopoulos, I. Kalatzis, G. Kagadis, N. Kalivas, A. Episkopakis, D. Linardatos, M. Roussou, E. Nirgianaki, D. Margetis, I. Valais, I. Sianoudis, K. Kourkoutas, N. Dimitropoulos, A. Louizi, C. Nomicos, G. Panayiotakis, Appl. Phys. B 80, 923 (2005)

    Article  ADS  Google Scholar 

  19. E. Zych, J. Trojan-Piegza, L. Kępiński, Sens. Actuators B, Chem. 109, 112 (2005)

    Article  Google Scholar 

  20. G.E. Giakoumakis, Appl. Phys. A 52, 7 (1991)

    ADS  Google Scholar 

  21. N. Kalivas, L. Costaridou, I. Kandarakis, D. Cavouras, C.D. Nomicos, G. Panayiotakis, Appl. Phys. A 78, 915 (2004)

    Article  ADS  Google Scholar 

  22. D. Cavouras, I. Kandarakis, G.S. Panayiotakis, E. Evangelou, C.D. Nomicos, Med. Phys. 23, 1965 (1996)

    Article  Google Scholar 

  23. I. Kandarakis, D. Cavouras, Eur. Radiol. 11, 1083 (2001)

    Article  Google Scholar 

  24. I. Kandarakis, D. Cavouras, G.S. Panayiotakis, C.D. Nomicos, Phys. Med. Biol. 42, 1351 (1997)

    Article  Google Scholar 

  25. I. Kandarakis, D. Cavouras, E. Kanellopoulos, C.D. Nomicos, G.S. Panayiotakis, Radiat. Meas. 29, 481 (1998)

    Article  Google Scholar 

  26. H.C. Van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Kandarakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalyvas, N., Liaparinos, P., Michail, C. et al. Studying the luminescence efficiency of Lu2O3:Eu nanophosphor material for digital X-ray imaging applications. Appl. Phys. A 106, 131–136 (2012). https://doi.org/10.1007/s00339-011-6640-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6640-5

Keywords

Navigation