Skip to main content
Log in

SnO2 thin films grown by pulsed Nd:YAG laser deposition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

SnO2 thin films have been deposited on glass substrates by pulsed Nd:YAG laser at different oxygen pressures, and the effects of oxygen pressure on the physical properties of SnO2 films have been investigated. The films were deposited at substrate temperature of 500°C in oxygen partial pressure between 5.0 and 125 mTorr. The thin films deposited between 5.0 to 50 mTorr showed evidence of diffraction peaks, but increasing the oxygen pressure up to 100 mTorr, three diffraction peaks (110), (101) and (211) were observed containing the SnO2 tetragonal structure. The electrical resistivity was very sensitive to the oxygen pressure. At 100 mTorr the films showed electrical resistivity of 4×10−2 Ω cm, free carrier density of 1.03×1019 cm−3, mobility of 10.26 cm2 V−1 s−1 with average visible transmittance of ∼87%, and optical band gap of 3.6 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Wagner, Science 300, 1245 (2003)

    Article  Google Scholar 

  2. R.L. Hoffman, B.J. Norris, J.F. Wagner, Appl. Phys. Lett. 82, 733 (2003)

    Article  ADS  Google Scholar 

  3. S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, T. Kawai, J. Appl. Phys. 93, 1624 (2003)

    Article  ADS  Google Scholar 

  4. R.E. Presley, C.L. Munsee, C.-H. Park, D. Hong, J.F. Wager, D.A. Keszler, J. Phys. D, Appl. Phys. 37, 2810 (2004)

    Article  ADS  Google Scholar 

  5. C.G. Granqvist, A. Hultåker, Thin Solid Films 411, 1 (2002)

    Article  ADS  Google Scholar 

  6. B.G. Lewis, D.C. Paine, Mater. Res. Soc. Bull. 25, 22 (2000)

    Article  Google Scholar 

  7. I. Hamberg, C.G. Granqvist, J. Appl. Phys. 60, R123 (1986)

    Article  ADS  Google Scholar 

  8. K.S. Shamala, L.C.S. Murthy, K. Narasimha Rao, Bull. Mater. Sci. 27(3), 295 (2004)

    Article  Google Scholar 

  9. R. Banerjee, D. Das, Thin Solid Films 149, 291 (1987)

    Article  ADS  Google Scholar 

  10. B. Stjerna, E. Olsson, G. Granqvist, J. Appl. Phys. 76, 3797 (1994)

    Article  ADS  Google Scholar 

  11. S.U. Lee, B. Hong, W.S. Choi, J. Vac. Sci. Technol. A 27(4), 996 (2009)

    Article  Google Scholar 

  12. G.G. Mandayo, E. Castano, F.J. Gracia, A. Cirera, A. Cornet, J.R. Morante, Sens. Actuators B 95, 90 (2003)

    Article  Google Scholar 

  13. D. Davazoglou, Thin Solid Films 302, 204 (1997)

    Article  ADS  Google Scholar 

  14. W.-K. Choi, H.-J. Jung, S.-K. Koh, J. Vac. Sci. Technol. A 14(2), 359 (1996)

    Article  ADS  Google Scholar 

  15. E. Çetinörgü, S. Goldsmith, Y. Rosenberg, R.L. Boxman, J. Non-Cryst. Solids 353, 2595 (2007)

    Article  ADS  Google Scholar 

  16. R.D. Vispute, V.P. Godbole, S.M. Chaudhari, S.M. Kanetkar, S.B. Ogale, J. Mater. Res. 3, 1180 (1988)

    Article  ADS  Google Scholar 

  17. S.B. Ogale, Thin Films and Heterostructures for Oxide Electronics (Springer, New York, 2005), p. 386

    Google Scholar 

  18. R. Khandelwal, A. Pratap Singh, A. Kapoor, S. Grigorescu, P. Miglietta, N.E. Stankova, A. Perrone, Opt. Laser Technol. 41, 89 (2009)

    Article  ADS  Google Scholar 

  19. M. Ying, Y. Xia, Y. Sun, M. Zhao, X. Liu, Opt. Lasers Eng. 41, 537 (2004)

    Article  Google Scholar 

  20. C.K. Kim, S.M. Choi, I.H. Noh, J.H. Lee, C. Hong, H.B. Chae, G.E. Jang, H.D. Park, Sens. Actuators B 77, 463 (2001)

    Article  Google Scholar 

  21. Y. Suda, H. Kawasaki, J. Namba, K. Iwatsuji, K. Doi, K. Wada, Surf. Coat. Technol. 174, 1293 (2003)

    Article  Google Scholar 

  22. R. Dolbec, M.A. El Khakani, A.M. Serventi, R.G. Saint-Jacques, Sens. Actuators B 93, 566 (2003)

    Article  Google Scholar 

  23. M. Strikovski, J.H. Miller Jr., Appl. Phys. Lett. 73, 1733 (1998)

    Article  ADS  Google Scholar 

  24. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)

    Article  Google Scholar 

  25. JCPDS: International Center Diffraction Data, 2005, PDF card no. 41-1445

  26. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction (Prentice Hall, New York, 2001), p. 170

    Google Scholar 

  27. F.O. Adurodija, H. Izumi, T. Ishihara, H. Yoshioka, K. Yamada, H. Matsui, M. Motoyama, Thin Solid Films 350, 79 (1999)

    Article  ADS  Google Scholar 

  28. P.P. Edwards, A. Porch, M.O. Jones, D.V. Morgan, R.M. Perks, Dalton Trans. 19, 2995 (2004)

    Article  Google Scholar 

  29. Ç. Kiliç, A. Zunger, Phys. Rev. Lett. 88(9), 095501 (2002)

    Article  ADS  Google Scholar 

  30. M. Batzill, U. Diebold, Prog. Surf. Sci. 79, 47 (2005)

    Article  ADS  Google Scholar 

  31. H. Kim, R.C.Y. Auyeung, A. Piqué, Thin Solid Films 516, 5052 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Chan y Díaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan y Díaz, E., Duarte-Moller, A., Camacho, J.M. et al. SnO2 thin films grown by pulsed Nd:YAG laser deposition. Appl. Phys. A 106, 619–624 (2012). https://doi.org/10.1007/s00339-011-6630-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6630-7

Keywords

Navigation