Skip to main content
Log in

Indentation response of single-crystal copper using rate-independent crystal plasticity

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We studied single-crystal copper of three different crystallographic orientations [(100), (011) and (111)] for nanoindentation response via a numerical simulation model using spherical indenters of radius (R) 3.4 μm and 10 μm. The model uses rate-independent crystal plasticity with a finite strain implemented as a user routine in the commercial finite element software ABAQUS. The model takes into account active crystallographic slip, orientation effects during nanoindentation computation, and the effect of friction between the indenter and copper substrate. We compared the load–displacement curve and indentation pile-up patterns obtained from the simulations with experimental measurements available in the literature. The indentation load and mean effective pressure beneath the indenter p m were found to be highest for (111) orientation and lowest for (100). The simulation and experimental data agree well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Broese Van Groenou, S.E. Kadijk, Slip patterns made by sphere indentations on single crystal MnZn ferrite. Acta Metall. 37(10), 2613–2624 (1989)

    Article  Google Scholar 

  2. Y.Y. Lim, M.M. Chaudhri, The influence of grain size on the indentation hardness of high-purity copper and aluminium. Philos. Mag., A, Phys. Condens. Matter Struct. Defects Mech. Prop. 82(10), 2071–2080 (2002)

    ADS  Google Scholar 

  3. J.D. Kiely, J.E. Houston, Nanomechanical properties of Au (111), (001), and (110) surfaces. Phys. Rev. B, Condens. Matter 57(19), 12588–12594 (1998)

    Article  ADS  Google Scholar 

  4. M.Y. Khan, L.M. Brown, M.M. Chaudhri, Effect of crystal orientation on the indentation cracking and hardness of MgO single crystals. J. Phys. D, Appl. Phys. 25(1A), A257–A265 (1992)

    Article  ADS  Google Scholar 

  5. N.A. Stelmashenko, M.G. Walls, L.M. Brown, Yu.V. Milman, Microindentations on W and Mo oriented single crystals: an STM study. Acta Metall. Mater. 41(10), 2855–2865 (1993)

    Article  Google Scholar 

  6. K.W. McElhaney, J.J. Vlassak, W.D. Nix, Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J. Mater. Res. 13(5), 1300–1306 (1998)

    Article  ADS  Google Scholar 

  7. W.D. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46(3), 411–425 (1998)

    Article  ADS  MATH  Google Scholar 

  8. S. Qu, Y. Huang, G.M. Pharr, K.C. Hwang, The indentation size effect in the spherical indentation of iridium: A study via the conventional theory of mechanism-based strain gradient plasticity. Int. J. Plast. 22(7), 1265–1286 (2006)

    Article  MATH  Google Scholar 

  9. R. Komanduri, N. Chandrasekaran, L.M. Raff, MD simulation of indentation and scratching of single crystal aluminum. Wear 240(1–2), 113–143 (2000)

    Article  Google Scholar 

  10. T. Tsuru, Y. Shibutani, Anisotropic effects in elastic and incipient plastic deformation under (001), (110), and (111) nanoindentation of Al and Cu. Phys. Rev. B, Condens. Matter Mater. Phys. 75(3), 35415 (2007)

    Article  ADS  Google Scholar 

  11. T. Zhu, J. Li, K.J. Van Vliet, S. Ogata, S. Yip, S. Suresh, Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper. J. Mech. Phys. Solids 52(3), 691–724 (2004)

    Article  ADS  MATH  Google Scholar 

  12. M.C. Fivel, C.F. Robertson, G.R. Canova, L. Boulanger, Three-dimensional modeling of indent-induced plastic zone at a mesoscale. Acta Mater. 46(17), 6183–6194 (1998)

    Article  Google Scholar 

  13. Y. Liu, S. Varghese, J. Ma, M. Yoshino, H. Lu, R. Komanduri, Orientation effects in nanoindentation of single crystal copper. Int. J. Plast. 24(11), 1990–2015 (2008)

    Article  MATH  Google Scholar 

  14. D.G. Rickerby, N.H. Macmillan, The hardness of cubic single crystals by spherical indentation. Mater. Sci. Eng. 40(2), 251–259 (1979)

    Article  Google Scholar 

  15. D. Peirce, R.J. Asaro, A. Needleman, Material rate dependence and localized deformation in crystalline solids. Acta Metall. 31(12), 1951–1976 (1983)

    Article  Google Scholar 

  16. D. Peirce, R.J. Asaro, A. Needleman, An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metall. 30(6), 1087–1119 (1982)

    Article  Google Scholar 

  17. L. Anand, M. Kothari, A computational procedure for rate-independent crystal plasticity. J. Mech. Phys. Solids 44(4), 525–558 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. C. Miehe, J. Schroder, Comparative study of stress update algorithms for rate-independent and rate-dependent crystal plasticity. Int. J. Numer. Methods Eng. 50(2), 273–298 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Alcala, D. Esque-De Los Ojos, Reassessing spherical indentation: Contact regimes and mechanical property extractions. Int. J. Solids Struct. 47, 2714–2732 (2010)

    Article  MATH  Google Scholar 

  20. Y. Liu, B. Wang, M. Yoshino, S. Roy, H. Lu, R. Komanduri, Combined numerical simulation and nanoindentation for determining mechanical properties of single crystal copper at mesoscale. J. Mech. Phys. Solids 53(12), 2718–2741 (2005)

    Article  ADS  MATH  Google Scholar 

  21. F.B. Foss, R.C. Brumfield, Some measurements of the shape of Brunel ball indentation. ASTM Spec. Tech. Publ. 22, 312 (1922)

    Google Scholar 

  22. O. Casals, J. Alcala, The duality in mechanical property extractions from Vickers and Berkovich instrumented indentation experiments. Acta Mater. 53(13), 3545–3561 (2005)

    Article  Google Scholar 

  23. M. Mata, O. Casals, J. Alcala, The plastic zone size in indentation experiments: The analogy with the expansion of a spherical cavity. Int. J. Solids Struct. 43(20), 5994–6013 (2006)

    Article  MATH  Google Scholar 

  24. D.F. Bahr, D.E. Kramer, W.W. Gerberich, Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46(10), 3605–3617 (1998)

    Article  Google Scholar 

  25. Y. Wang, D. Raabe, C. Kluber, F. Roters, Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals. Acta Mater. 52(8), 2229–2238 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Sridhar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narayanan, K.R., Subbiah, S. & Sridhar, I. Indentation response of single-crystal copper using rate-independent crystal plasticity. Appl. Phys. A 105, 453–461 (2011). https://doi.org/10.1007/s00339-011-6618-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6618-3

Keywords

Navigation