Skip to main content
Log in

Self-assembly of CuSO4 nanoparticles and bending multi-wall carbon nanotubes on few-layer graphene surfaces

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

When a colloidal suspension is allowed to wet a suitable substrate, various patterns emerge that can be varied from isolated island-like structures to fractal patterns. In this work we investigate the patterns arising from the interplay of colloidal copper sulfate suspensions containing carbon nanotubes with few-layer graphene substrates. The compositions of the thin film samples were investigated using X-ray photoelectron spectroscopy, surface topography and the nanostructure of the thin films were probed with atomic force microscope and transmission electron microscope respectively. The colloidal suspensions were characterized using contact angle and viscosity measurements. The colloidal suspensions when dip coated on few-layer graphene substrates exhibited fractal like morphology with the aggregation of copper sulfate crystallites to hexagonal platelets. This aggregation is explained invoking the depletion attraction theory. The various patterns observed experimentally were reproduced using a Monte Carlo simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Hsu, Y. Yang, K. Wood, Chin. J. Phys. 45, 686 (2007)

    Google Scholar 

  2. Roy, S. Roy, A.J. Bhattacharyya, S. Banerjee, S. Tarafdar, Eur. Phys. J. B 12, 1 (1999)

    Article  ADS  Google Scholar 

  3. Yu.J. Zhai, Z. Li, M. Wan, M. Gao, L. Jiang, Thin Solid Films 516, 5107 (2008)

    Article  ADS  Google Scholar 

  4. N.V. Didenko, E.M. Kim, D.A. Muzychenko, A.A. Nikulin, O.A. Aktsipetrov, Appl. Phys. B 74, 647 (2002)

    Article  ADS  Google Scholar 

  5. U. Thiele, A. Stannard, C.P. Martin, E. Pauliac-Vaujour, P. Moriarty, J. Phys. Chem. C 112, 15195 (2008)

    Article  Google Scholar 

  6. E. Rabani, D.R. Reichman, P.L. Geissler, L.E. Brus, Nature 426, 271 (2003)

    Article  ADS  Google Scholar 

  7. U. Thiele, A. Stannard, C.P. Martin, E. Pauliac-Vaujour, P. Moriarty, J. Phys. Chem. C 112, 15195 (2008)

    Article  Google Scholar 

  8. M. Mertig, U. Thiele, J. Bradt, G. Leibiger, W. Pompe, H. Wndrock, Surf. Interface Anal. 25, 514 (1997)

    Article  Google Scholar 

  9. C.G. Sztrum, O. Hod, E. Rabani, J. Phys. Chem. B 109, 6741 (2005)

    Article  Google Scholar 

  10. G. Yosef, E. Rabani, J. Phys. Chem. B 110, 20965 (2006)

    Article  Google Scholar 

  11. S.K. Das, M.M. Sharma, R.S. Schecher, J. Phys. Chem. 100, 7122 (1997)

    Article  Google Scholar 

  12. A. Patti, Physicochem. Eng. Asp. 361, 81 (2010)

    Article  Google Scholar 

  13. Z. Lijuan, Z. Xuehua, F. Chunhai, Z. Yi, H. Jun, Langmuir 25, 8860 (2009)

    Article  Google Scholar 

  14. H.Z. Xue, M. Nobuo, S.J.C. Vincent, Langmuir 22, 5025 (2006)

    Article  Google Scholar 

  15. F.M. John, F.S. William, E.S. Peter, D.B. Kenneth, Handbook of x-ray Photoelectron Spectroscopy (Perkin-Elmer Physical Electronics Division, Eden Prairie, 1993)

    Google Scholar 

  16. F. Li, W. Bi, T. Kong, Q. Qin Optical, Cryst. Res. Technol. 44(7), 729 (2007)

    Article  Google Scholar 

  17. F. Li, T. Kong, W. Bi, D. Li, Z. Li, X. Huang, Appl. Surf. Sci. 255, 6285 (2009)

    Article  ADS  Google Scholar 

  18. T. Araki, H. Tanaka, J. Phys., Condens. Matter 20, 072101 (2008)

    Article  ADS  Google Scholar 

  19. M. Zanella, G. Bertoni, I.R. Franchini, R. Brescia, D. Baranov, L. Manna, Chem. Commun. 47, 203 (2010)

    Article  Google Scholar 

  20. D. Marenduzzo, K. Finan, P.R. Cook, J. Cell Biol. 175(5), 681 (2006)

    Article  Google Scholar 

  21. T.K. Sau, C.J. Murphy, Langmuir 21, 2923 (2005)

    Article  Google Scholar 

  22. G.H. Koenderink, G.A. Vleiegenthart, S.G. Kluijtmans, A. Blaaderen, A.P. Philipse, H.N. Lekkerkerker, Langmuir 15, 4693 (1999)

    Article  Google Scholar 

  23. X. Li, Y. Liu, X. Wei, J. Chem. Eng. Data 49(4), 1043 (2004)

    Article  Google Scholar 

  24. S. Vafaei, T. Borca-Tascius, M.Z. Podowski, A. Purkayastha, G. Ramamath, P.M. Ajayan, Nanotechnology 17, 2523 (2006)

    Article  ADS  Google Scholar 

  25. X.H. Zhang, G. Li, N. Maeda, J. Hu, Langmuir 22, 9238 (2006)

    Article  Google Scholar 

  26. C.P. Martin, M.O. Blunt, E. Pauliac-Vaujour, A. Stannard, P. Moriarty, I. Vancea, U. Thiele, Phys. Rev. Lett. 99, 116103 (2007)

    Article  ADS  Google Scholar 

  27. B.M. Besancon, P.F. Green, Phys. Rev. E 70, 051808 (2004)

    Article  ADS  Google Scholar 

  28. K. Katrgupta, R. Konnur, A. Sharma, Langmuir 16(10), 243 (2000)

    Google Scholar 

  29. S.H. Al-Harthi, M. Al-Barwani, M. Elzain, N. Al-Naamani, T. Hysen, J. Appl. Phys. 110, 044319 (2011)

    Article  ADS  Google Scholar 

  30. V.V. Tsukruk, H. Ko, S. Peleshanko, Nanotube surface Arrays:. Phys. Rev. Lett. 92(6), 065502 (2004)

    Article  ADS  Google Scholar 

  31. A.W. Adamson, Physical Chemistry of Surfaces, 5th edn. (Wiley, New York, 1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Al-Harthi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Harthi, S.H., Al-Barwani, M., Elzain, M. et al. Self-assembly of CuSO4 nanoparticles and bending multi-wall carbon nanotubes on few-layer graphene surfaces. Appl. Phys. A 105, 469–477 (2011). https://doi.org/10.1007/s00339-011-6588-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6588-5

Keywords

Navigation