Skip to main content
Log in

Effect of nanostructures on evaporation and explosive boiling of thin liquid films: a molecular dynamics study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations have been employed to investigate the boiling phenomena of thin liquid films adsorbed on a nanostructured solid surface. The molecular system was comprised of the following: solid platinum wall, liquid argon, and argon vapor. A few layers of the liquid argon were placed on the nanoposts decorated solid surface. The nanoposts height was varied keeping the liquid film thickness constant to capture three scenarios: (i) liquid-film thickness is higher than the height of the nanoposts, (ii) liquid-film and nanoposts are of same height, and (iii) liquid-film thickness is less than the height of the nanoposts. The rest of the simulation box was filled with argon vapor. The simulation was started from its initial configuration, and once the equilibrium of the three phase system was established, the wall was suddenly heated to a higher temperature which resembles an ultrafast laser heating. Two different jump temperatures were selected: a few degrees above the boiling point to initiate normal evaporation and far above the critical point to initiate explosive boiling. Simulation results indicate nanostructures play a significant role in both cases: Argon responds very quickly for the nanostructured surface, the transition from liquid to vapor becomes more gradual, and the evaporation rate increases with the nanoposts height.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.A.G. Kabov, E. Ya, D.V. Zaitsev, in Thermal and Thermomechanical Phenomena in Electronic Systems 2008, Orlando, FL, 28–31 May 2008

    Google Scholar 

  2. S. Georgiou, A. Koubenakis, Chem. Rev. 103(2), 349–394 (2003)

    Article  Google Scholar 

  3. R. Bhardwaj, X. Fang, D. Attinger, New J. Phys. 11(7), 075020 (2009)

    Article  ADS  Google Scholar 

  4. T. Juhasz, X.H. Hu, L. Turi, Z. Bor, Lasers Surg. Med. 15(1), 91–98 (1994)

    Article  Google Scholar 

  5. P. Yi, D. Poulikakos, J. Walther, G. Yadigaroglu, Int. J. Heat Mass Transf. 45(10), 2087–2100 (2002)

    Article  MATH  Google Scholar 

  6. G. Nagayama, T. Tsuruta, P. Cheng, Int. J. Heat Mass Transf. 49(23–24), 4437–4443 (2006)

    Article  MATH  Google Scholar 

  7. B.R. Novak, E.J. Maginn, M.J. McCready, J. Heat Transf. 130(4), 042411 (2008)

    Article  Google Scholar 

  8. S. Maruyama, T. Kimura, in 5th ASME–JSME Thermal Engineering Joint Conference, San Diego, USA, 1999

    Google Scholar 

  9. S.C. Maroo, J.N. Chung, J. Colloid Interface Sci. 328(1), 134–146 (2008)

    Article  Google Scholar 

  10. X. Gu, H.M. Urbassek, Appl. Phys. B, Lasers Opt. 81(5), 675–679 (2005)

    Article  ADS  Google Scholar 

  11. G. Nagayama, M. Kawagoe, A. Tokunaga, T. Tsuruta, Int. J. Therm. Sci. 49(1), 59–66 (2010)

    Article  Google Scholar 

  12. G. Nagayama, S. Shi-iki, T. Tsuruta, Trans. Jpn. Soc. Mech. Eng. B 73(728), 1084–1091 (2007)

    Article  Google Scholar 

  13. G. Nagayama, M. Kawagoe, T. Tsuruta, in MNC2007-21410, Kyoto, Japan, 2007, pp. 1–10

    Google Scholar 

  14. J.E. Lennard-Jones, A.F. Devonshire, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 163(912), 53–70 (1937)

    ADS  Google Scholar 

  15. Y. Dou, L.V. Zhigilei, N. Winograd, B.J. Garrison, J. Phys. Chem. 105(12), 2748–2755 (2001)

    Article  Google Scholar 

  16. D.A. Kofke, J. Chem. Phys. 98 (5) (1993)

  17. S.J. Plimpton, J. Comput. Phys. 117, 1–19 (1995)

    Article  ADS  MATH  Google Scholar 

  18. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. Model. 14, 33–38 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamil A. Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morshed, A.K.M.M., Paul, T.C. & Khan, J.A. Effect of nanostructures on evaporation and explosive boiling of thin liquid films: a molecular dynamics study. Appl. Phys. A 105, 445–451 (2011). https://doi.org/10.1007/s00339-011-6577-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6577-8

Keywords

Navigation