Skip to main content
Log in

Combined continuum-atomistic modeling of ultrashort-pulsed laser irradiation of silicon

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ultrafast thermomechanical responses of silicon thin films due to ultrashort-pulsed laser irradiation were investigated using an atomic-level hybrid method coupling the molecular dynamics and the ultrafast two-step energy transport model. The dynamic reflectivity and absorption were considered, and the effects of laser fluence and pulse duration on the thermomechanical response were studied. It was found that both the carrier temperature and number density rapidly increase to their maximum while the lattice temperature rises at a much slower rate. The ultrafast laser heating could induce a strong stress wave in the film, with the maximum compressive and tensile stress occurring near the front and back surfaces, respectively. For laser pulses of the same duration, the higher the laser fluence is, the higher the carrier temperature and density and lattice temperature are induced. For the same laser fluence, a longer pulse generally produces lower carrier density and temperatures and weaker stress shock strength. However, for the fluence of 0.2 J/cm2, the lowest lattice temperature was simulated for a 100-fs pulse compared to the 1-ps and 5-ps pulses, due to the increase of reflectivity by high carrier density. It is also shown that the optical properties as functions of lattice temperature usually employed are not suited for modeling ultrafast laser interactions with silicon materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.M. Metev, V.P. Veiko, Laser-Assisted Microtechnology (Springer, Berlin, 1994)

    Book  Google Scholar 

  2. S. Weller, Laser Tech. J. 5, 40 (2007)

    Article  MathSciNet  Google Scholar 

  3. M. Guillermin, F. Garrelie, N. Sanner, E. Audouard, H. Soder, Appl. Surf. Sci. 253, 8075 (2007)

    Article  ADS  Google Scholar 

  4. D.P. Korfiatis, A.Th. Thoma, J.C. Vardaxoglou, J. Phys. D, Appl. Phys. 40, 6803 (2007)

    Article  ADS  Google Scholar 

  5. M. Farsari, G. Filippidis, S. Zoppel, G.A. Reider, C. Fotakis, J. Micromech. Microeng. 15, 1786 (2005)

    Article  ADS  Google Scholar 

  6. M.S. Amer, M.A. El-Ashry, L.R. Dosser, K.E. Hix, J.F. Maguire, B. Irwin, Appl. Surf. Sci. 242, 162 (2005)

    Article  ADS  Google Scholar 

  7. B. Pecholt, M. Vendan, Y. Dong, P. Molian, Int. J. Adv. Manuf. Technol. 39, 39 (2008)

    Article  Google Scholar 

  8. D.P. Korfiatis, K.-A.Th. Thoma, J.C. Vardaxoglou, Appl. Surf. Sci. 255, 7605 (2009)

    Article  ADS  Google Scholar 

  9. M.D. Shirk, P.A. Molian, J. Laser Appl. 10, 18 (1998)

    Article  ADS  Google Scholar 

  10. T.Y. Choi, D.J. Hwang, C.P. Grigoropoulos, Appl. Surf. Sci. 197–198, 720 (2002)

    Article  Google Scholar 

  11. A.M. Lomonosov, P. Hess, R.E. Kumon, M.F. Hamilton, Phys. Rev. B 69, 035314 (2004)

    Article  ADS  Google Scholar 

  12. V. Hommes, M. Miclea, R. Hergenröder, Appl. Surf. Sci. 252, 7449 (2006)

    Article  ADS  Google Scholar 

  13. S. Singha, Z. Hu, R.J. Gordon, J. Appl. Phys. 104, 113520 (2008)

    Article  ADS  Google Scholar 

  14. V. Zorba, X. Mao, R.E. Russo, Appl. Phys. Lett. 95, 041110 (2009)

    Article  ADS  Google Scholar 

  15. H.M. van Driel, Phys. Rev. B 35, 8166 (1987)

    Article  ADS  Google Scholar 

  16. S.H. Lee, J.S. Lee, S. Park, Y.K. Choi, Numer. Heat Transf., Part A, Appl. 44, 833 (2003)

    Article  ADS  Google Scholar 

  17. J.K. Chen, D.Y. Tzou, J.E. Beraun, Int. J. Heat Mass Transf. 48, 501 (2005)

    Article  Google Scholar 

  18. H. Ki, J. Mazumder, J. Laser Appl. 17, 110 (2005)

    Article  Google Scholar 

  19. X. Qi, C. Suh, J. Therm. Stresses 32, 477 (2009)

    Article  Google Scholar 

  20. X. Qi, C. Suh, Int. J. Heat Mass Transf. 53, 41 (2010)

    Article  MATH  Google Scholar 

  21. X. Qi, C. Suh, J. Therm. Stresses 34, 115 (2011)

    Article  Google Scholar 

  22. H.S. Sim, S.H. Lee, K.G. Kang, Microsyst. Technol. 14, 1439 (2008)

    Article  Google Scholar 

  23. K. Sokolowski-Tinten, D. von der Linde, Phys. Rev. B 61, 2643 (2000)

    Article  ADS  Google Scholar 

  24. D. Agassi, J. Appl. Phys. 55, 4376 (1984)

    Article  ADS  Google Scholar 

  25. D.S. Ivanov, L.V. Zhigilei, Phys. Rev. B 68, 064114 (2003)

    Article  ADS  Google Scholar 

  26. Y. Gan, J.K. Chen, Appl. Phys. Lett. 94, 201116 (2009)

    Article  ADS  Google Scholar 

  27. Y. Gan, J.K. Chen, Mech. Mater. 42, 491 (2010)

    Article  Google Scholar 

  28. Y. Gan, J.K. Chen, J. Appl. Phys. 108, 103102 (2010)

    Article  ADS  Google Scholar 

  29. T.F. Boggess, K.M. Bohnert, K. Mansour, S.C. Moss, I.W. Boyd, A.L. Smirl, IEEE J. Quantum Electron. QE-22, 360 (1986)

    Article  ADS  Google Scholar 

  30. N. Medvedev, B. Rethfeld, J. Appl. Phys. 108, 103112 (2010)

    Article  ADS  Google Scholar 

  31. M. Fox, Optical Properties of Solids (Oxford University Press, Oxford, 2001)

    Google Scholar 

  32. F.H. Stillinger, T.A. Weber, Phys. Rev. B, Condens. Matter Mater. Phys. 31, 5262 (1985)

    Article  ADS  Google Scholar 

  33. D.H. Tsai, J. Chem. Phys. 70, 1375 (1979)

    Article  ADS  Google Scholar 

  34. T. Sjodin, H. Petek, H.L. Dai, Phys. Rev. Lett. 81, 5664 (1998)

    Article  ADS  Google Scholar 

  35. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985)

    Google Scholar 

  36. Y.P. Varshni, Physica 34, 149 (1967)

    Article  ADS  Google Scholar 

  37. J. Dwiezor, W. Schmid, Appl. Phys. Lett. 31, 346 (1977)

    Article  ADS  Google Scholar 

  38. P.L. Silvestrelli, A. Alavi, M. Parrinello, D. Frenkel, Phys. Rev. Lett. 77, 3149 (1996)

    Article  ADS  Google Scholar 

  39. A. Gambirasio, M. Bernasconi, L. Colombo, Phys. Rev. B 61, 8233 (2000)

    Article  ADS  Google Scholar 

  40. L. Shokeen, P.K. Schelling, Appl. Phys. Lett. 97, 151907 (2010)

    Article  ADS  Google Scholar 

  41. G.E. Jellison, F.A. Modine, Phys. Rev. B 27, 7466 (1983)

    Article  ADS  Google Scholar 

  42. G.E. Jellison, F.A. Modine, Appl. Phys. Lett. 41, 180 (1982)

    Article  ADS  Google Scholar 

  43. B. Rethfeld, Phys. Rev. B 73, 035101 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Gan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, Y., Chen, J.K. Combined continuum-atomistic modeling of ultrashort-pulsed laser irradiation of silicon. Appl. Phys. A 105, 427–437 (2011). https://doi.org/10.1007/s00339-011-6573-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6573-z

Keywords

Navigation