Advertisement

Applied Physics A

, Volume 105, Issue 4, pp 909–914 | Cite as

On the correlation of crystal defects and band gap properties of ZnO nanobelts

  • A. Asthana
  • K. Momeni
  • A. Prasad
  • Y. K. Yap
  • R. S. Yassar
Article

Abstract

We report here investigations of crystal and electronic structure of as-synthesized and annealed ZnO nanobelts by an in-situ high-resolution transmission electron microscope equipped with a scanning tunneling microscopy probe. The in-situ band gap measurements of individual ZnO nanobelts were carried out in scanning tunneling spectroscopy mode using the differential conductance dI/dVV data. The band gap value of the as-synthesized ZnO nanobelts was calculated to be ∼2.98 eV, while this property for the annealed nanobelts (∼3.21 eV) was close to the band gap value for bulk ZnO materials (∼3.37 eV). The difference in the band gap value of the as-synthesized ZnO nanobelts and annealed ones was attributed to the planar defects (e.g. stacking faults and twins). These defects can alter the electronic structure by producing localized resonant states that result in band gap reduction.

Keywords

HRTEM Scanning Tunneling Microscope Gold Wire Differential Conductance Scanning Tunneling Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.A. de Heer, A. Chatelain, D. Ugarte, Science 270, 1197 (1995) CrossRefGoogle Scholar
  2. 2.
    S. Fan, M.G. Chaplin, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Science 283, 512 (1999) ADSCrossRefGoogle Scholar
  3. 3.
    L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, Appl. Phys. Lett. 76, 2071 (2000) ADSCrossRefGoogle Scholar
  4. 4.
    W.A. de Heer, J.-M. Bonard, K. Fauth, A. Chatelain, L. Forro, D. Ugarte, Adv. Mater. 9, 87 (1997) CrossRefGoogle Scholar
  5. 5.
    A.P. Roth, J.B. Webb, D.F. Williams, Phys. Rev. B 25, 7836 (1982) ADSCrossRefGoogle Scholar
  6. 6.
    Y.F. Lu, H.Q. Ni, Z.H. Mai, Z.M. Ren, J. Appl. Phys. 88, 498 (2000) ADSCrossRefGoogle Scholar
  7. 7.
    V. Srikant, D.R. Clarke, J. Appl. Phys. 83, 5447 (1998) ADSCrossRefGoogle Scholar
  8. 8.
    A. Urbeita, P. Fernandez, J. Piqueras, T. Sekiguchi, Semicond. Sci. Technol. 16, 589 (2001) ADSCrossRefGoogle Scholar
  9. 9.
    Y.B. Li, Y. Bando, T. Sato, K. Kurashima, Appl. Phys. Lett. 81, 144 (2002) ADSCrossRefGoogle Scholar
  10. 10.
    B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. 79, 943 (2001) ADSCrossRefGoogle Scholar
  11. 11.
    H. Mao, K. Yu, J. Wang, J. Yu, Z. Zhu, Opt. Express 17, 118861 (2009) Google Scholar
  12. 12.
    S. Ruhle, L.K. van Vugt, H.Y. Li, N.A. Keizer, L. Kuipers, D. Vanmaekelbergh, Nano Lett. 8, 119 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    L.X. Sun, Z.H. Chen, Q. Ren, K. Yu, L. Bai, W. Zhu, H. Xiong, Z.Q. Zhu, X. Shen, Phys. Rev. Lett. 100, 156403 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    S.L. Menshah, V.K. Kayastha, Y.K. Yap, J. Phys. Chem. C 111, 16092 (2007) CrossRefGoogle Scholar
  15. 15.
    R.M. Feenstra, Surf. Sci. 965, 299 (1994) Google Scholar
  16. 16.
    J.A. Stroscio, R.M. Feenstra, A.P. Fein, Phys. Rev. Lett. 57, 2579 (1986) ADSCrossRefGoogle Scholar
  17. 17.
    N.D. Lang, Phys. Rev. B 34, 5497 (1986) CrossRefGoogle Scholar
  18. 18.
    R.M. Feenstra, J.A. Stroscio, A.P. Fein, Surf. Sci. 181, 295 (1987) ADSCrossRefGoogle Scholar
  19. 19.
    R.J. Hamers, R.M. Tramp, J.E. Demuth, Phys. Rev. Lett. 56, 1972 (1986) ADSCrossRefGoogle Scholar
  20. 20.
    Y. Ding, Z.L. Wang, Micron 40, 335 (2009) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Z.L. Wang, Mater. Sci. Eng., R Rep. 64, 33 (2009) CrossRefGoogle Scholar
  22. 22.
    C. Kligshirn, Phys. Status Solidi B 71, 547 (1975) ADSCrossRefGoogle Scholar
  23. 23.
    H.Y. Peng, M.D. McCluskey, Y.M. Gupta, M.A. Kneissl, N.M. Johnson, Phys. Rev. B 71, 1152071 (2005) Google Scholar
  24. 24.
    K. Nishidate, M. Hasegawa, Phys. Rev. B 78, 195403 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    S.D. Mahanti, K. Hoang, S. Ahmad, Physica B 401, 291 (2007) ADSCrossRefGoogle Scholar
  26. 26.
    E.G. Bylander, J. Appl. Phys. 49, 1188 (1978) ADSCrossRefGoogle Scholar
  27. 27.
    K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voiget, Appl. Phys. Lett. 68, 403 (1996) ADSCrossRefGoogle Scholar
  28. 28.
    M. Liu, A.H. Kitai, P. Mascher, J. Lumin. 54, 35 (1992) CrossRefGoogle Scholar
  29. 29.
    A. Prasad, A. Pandey, Y.K. Yap, Bull. Am. Phys. Soc. 55, 292 (2010) Google Scholar
  30. 30.
    J.W.G. Wildoer, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Nature 391, 59 (1998) ADSCrossRefGoogle Scholar
  31. 31.
    J.A. Stroscio, R.M. Feenstra, A.P. Fein, Phys. Rev. Lett. 57, 2579 (1986) ADSCrossRefGoogle Scholar
  32. 32.
    R.M. Feenstra, J.A. Stroscio, A.P. Fein, Surf. Sci. 181, 295 (1987) ADSCrossRefGoogle Scholar
  33. 33.
    N.D. Lang, Phys. Rev. B 34, R5947 (1986) ADSCrossRefGoogle Scholar
  34. 34.
    R.J. Hamers, in Scanning Tunneling Microscopy and Spectroscopy, ed. by D.A. Bonnell (VCH, New York, 1993), pp. 51–103 Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Mechanical Engineering–Engineering MechanicsMichigan Technological UniversityHoughtonUSA
  2. 2.Physics DepartmentMichigan Technological UniversityHoughtonUSA

Personalised recommendations