Advertisement

Applied Physics A

, Volume 105, Issue 2, pp 399–405 | Cite as

Vacuum ultra violet absorption spectroscopy of 193 nm photoresists

  • M. FouchierEmail author
  • E. Pargon
  • L. Azarnouche
  • K. Menguelti
  • O. Joubert
  • T. Cardolaccia
  • Y. C. Bae
Article

Abstract

193 nm photoresists which are methacrylate-based polymers are very sensitive to vacuum ultra violet (VUV) light (100 nm<λ<200 nm) generated by plasmas used for pattern transfer technologies. Upon plasma treatment the physical properties of the polymers can be deeply modified. To better understand the chemical changes involved, the absorption coefficient of a commercial 193 nm photoresist has been measured in the 120–280 nm wavelength range using a home built experimental set-up. The different contributions to the absorption were identified by also measuring the spectra of model polymers and simpler polymer chains. This knowledge was then used to identify the chemical changes in the photoresist upon heating up to 240°C.

Keywords

PMMA Adamantane Model Polymer Gamma Butyrolactone Vacuum Ultra Violet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.M. Wallraff, R.D. Allen, W.D. Hinsberg, C.F. Larson, R.D. Johnson, R. DiPietro, G. Breyta, N. Hacker, J. Vac. Sci. Technol. B 11, 2783 (1993) CrossRefGoogle Scholar
  2. 2.
    S. Takechi, M. Takahashi, A. Kotachi, K. Nozaki, E. Yano, I. Hanyu, J. Photopolym. Sci. Technol. 9, 475 (1996) CrossRefGoogle Scholar
  3. 3.
    M. McCallum, K.R. Dean, J.D. Byers, Microelectron. Eng. 46, 335 (1999) CrossRefGoogle Scholar
  4. 4.
    E. Pargon, M. Martin, J. Thiault, O. Joubert, J. Foucher, T. Lill, J. Vac. Sci. Technol. B 26, 1011 (2008) CrossRefGoogle Scholar
  5. 5.
    A.P. Mahorowala, K.-J. Chen, R. Sooriyakumaran, A. Clancy, D. Murthy, S. Rasgon, Proc. SPIE 5753, 380 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    H. Kawahira, N. Matsuzawa, E. Matsui, A. Ando, K. Salam, M. Yoshida, Y. Yamaguchi, K. Kugimiya, T. Tatsumi, H. Nakano, T. Iwai, M. Irie, Proc. SPIE 6153, 615319 (2006) CrossRefGoogle Scholar
  7. 7.
    M.-C. Kim, D. Shamiryan, Y. Jung, W. Boullart, C.-J. Kang, H.-K. Cho, J. Vac. Sci. Technol. B 24, 2645 (2006) CrossRefGoogle Scholar
  8. 8.
    E. Pargon, M. Martin, K. Menguelti, L. Azarnouche, J. Foucher, O. Joubert, Appl. Phys. Lett. 94, 103111 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    D. Nest, T.-Y. Chung, D.B. Graves, S. Engelmann, R.L. Bruce, F. Weilnboeck, G.S. Oehrlein, D. Wang, C. Andes, E.A. Hudson, Plasma Proc. Polym. 6, 649 (2009) CrossRefGoogle Scholar
  10. 10.
    S. Engelmann, R.L. Bruce, T. Kwon, R. Phaneuf, G.S. Oehrlein, Y.C. Bae, C. Andes, D. Graves, D. Nest, E.A. Hudson, P. Lazzeri, E. Iacob, M. Anderle, J. Vac. Sci. Technol. B 25, 1353 (2007) CrossRefGoogle Scholar
  11. 11.
    M. Sumiya, R. Bruce, S. Engelmann, F. Weilnboeck, G.S. Oehrlein, J. Vac. Sci. Technol. B 26, 1637 (2008) CrossRefGoogle Scholar
  12. 12.
    E. Kesters, M. Claes, Q.T. Le, M. Lux, A. Franquet, G. Vereecke, P.W. Mertens, M.M. Frank, R. Carleer, P. Adriaensens, J.J. Biebuyk, S. Bebelman, Thin Solid Films 516, 3454 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    E. Pargon, K. Menguelti, M. Martin, A. Bazin, O. Chaix-Pluchery, C. Sourd, S. Derrough, T. Lill, O. Joubert, J. Appl. Phys. 105, 094902 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    T.-Y. Chung, D. Nest, D.B. Graves, F. Weilnboeck, R.L. Bruce, G.S. Oehrlein, D. Wang, M. Li, E.A. Hudson, J. Phys. D, Appl. Phys. 43, 1 (2010) Google Scholar
  15. 15.
    C. Cismaru, J.L. Shohet, Appl. Phys. Lett. 74, 2599 (1999) ADSCrossRefGoogle Scholar
  16. 16.
    V.M. Donnelly, M.V. Malyshev, M. Schabel, A. Kornblit, W. Tai, I.P. Herman, N.C.M. Fuller, Plasma Sources Sci. Technol. 11, A26 (2002) ADSCrossRefGoogle Scholar
  17. 17.
    Y.I. Dorofeev, V.E. Skurat, Russ. Chem. Rev. 51, 527 (1982) ADSCrossRefGoogle Scholar
  18. 18.
    V.E. Skurat, Y.I. Dorofeev, Die Ang. Makromol. Chem., Macromol. Symp. 216, 205 (1994) Google Scholar
  19. 19.
    M.R. Wertheimer, A.C. Fozza, A. Holländer, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 151, 65 (1999) ADSCrossRefGoogle Scholar
  20. 20.
    A.C. Fozza, J.E. Klemberg-Sapieha, M.R. Wertheimer, Plasma Polym. 4, 183 (1999) CrossRefGoogle Scholar
  21. 21.
    R. Wilken, A. Holländer, J. Behnisch, Plasma Polym. 7, 185 (2002) CrossRefGoogle Scholar
  22. 22.
    V. Skurat, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 208, 27 (2003) ADSCrossRefGoogle Scholar
  23. 23.
    F.-E. Truica-Marasescu, M.R. Wertheimer, Macromol. Chem. Phys. 206, 744 (2005) CrossRefGoogle Scholar
  24. 24.
    F. Weilnboeck, R.L. Bruce, S. Engelmann, G.S. Oehrlein, D. Nest, T.-Y. Chung, D. Graves, M. Li, D. Wang, C. Andes, E.A. Hudson, J. Vac. Sci. Technol. B 28, 993 (2010) CrossRefGoogle Scholar
  25. 25.
    V. Nelea, V.N. Vasilets, V.E. Skurat, F. Truica-Marasescu, M.R. Wertheimer, Plasma Proc. Polym. 7, 431 (2010) CrossRefGoogle Scholar
  26. 26.
    M. Schwell, H.-W. Jochims, H. Baumgärtel, F. Dulieu, S. Leach, Planet. Space Sci. 54, 1073 (2006) ADSCrossRefGoogle Scholar
  27. 27.
    A. Holländer, J.E. Klemberg-Sapieha, M.R. Wertheimer, J. Polym. Sci., A, Polym. Chem. 33, 2013 (1995) ADSCrossRefGoogle Scholar
  28. 28.
    C.-M. Chan, T.-M. Ko, H. Hiraoka, Surf. Sci. Rep. 24, 1 (1996) CrossRefGoogle Scholar
  29. 29.
    A. Holländer, J. Behnisch, Surf. Coat. Technol. 98, 855 (1998) CrossRefGoogle Scholar
  30. 30.
    E. Sarantopoulou, J. Kovac, Z. Kollia, I. Raptis, S. Kobe, A.C. Cefalas, Surf. Interface Anal. 40, 400 (2008) CrossRefGoogle Scholar
  31. 31.
    A. Holländer, R. Wilken, J. Behnish, Surf. Coat. Technol. 116–119, 788 (1999) CrossRefGoogle Scholar
  32. 32.
    S. Tajima, K. Komvopoulos, Appl. Phys. Lett. 89, 124102 (2006) ADSCrossRefGoogle Scholar
  33. 33.
    R.H. Partridge, J. Chem. Phys. 45, 1685 (1966) ADSCrossRefGoogle Scholar
  34. 34.
    J.W. Raymonda, W.T. Simpson, J. Chem. Phys. 47, 430 (1967) ADSCrossRefGoogle Scholar
  35. 35.
    R.H. Partridge, J. Chem. Phys. 49, 3656 (1968) ADSCrossRefGoogle Scholar
  36. 36.
    S. Onari, J. Phys. Soc. Jpn. 26, 500 (1969) ADSCrossRefGoogle Scholar
  37. 37.
    S. Hashimoto, K. Seki, N. Sato, H. Inokuchi, J. Chem. Phys. 76, 163 (1981) ADSCrossRefGoogle Scholar
  38. 38.
    K. Kameta, S. Machida, M. Kitajima, M. Ukai, N. Kouchi, Y. Hatano, K. Ito, J. Electron Spectrosc. Relat. Phenom. 79, 391 (1996) CrossRefGoogle Scholar
  39. 39.
    E.A. Costner, B.K. Long, C. Navar, S. Jockusch, X.L. Lei, P. Zimmerman, A. Campion, N.J. Turro, C.G. Willson, J. Phys. Chem. A 113, 9337 (2009) CrossRefGoogle Scholar
  40. 40.
    J.M.J. Frechet, Pure Appl. Chem. 64, 1239–1248 (1992) CrossRefGoogle Scholar
  41. 41.
    Y. Matsui, H. Sugawara, S. Seki, T. Kozawa, S. Tagawa, T. Itani, Appl. Phys. Express 1, 036001 (2008) ADSCrossRefGoogle Scholar
  42. 42.
    K. Kudo, T. Iwabuchi, K. Mutoh, T. Miyata, R. Sano, K. Tanaka, Jpn. J. Appl. Phys. 29, 2572 (1990) ADSCrossRefGoogle Scholar
  43. 43.
    M. Suto, X. Wang, L.C. Lee, J. Phys. Chem. 92, 3764 (1988) CrossRefGoogle Scholar
  44. 44.
    V.L. Orkin, E. Villenave, R.E. Huie, M.J. Kurylo, J. Phys. Chem. A 103, 9770 (1999) CrossRefGoogle Scholar
  45. 45.
    M. Fouchier, E. Pargon, L. Azarnouche, O. Luere, K. Menguelti, G. Cunges, N. Sadhegi, O. Joubert, in Proceedings of the 32nd International Symposium on Dry Process, Tokyo (2011) Google Scholar
  46. 46.
    L. Azarnourche, J. Appl. Phys. (2011, submitted) Google Scholar
  47. 47.
    L.J. Bellamy, The Infrared Spectra of Complex Molecules (Wiley, New York, 1960) Google Scholar
  48. 48.
    J.Y. Lee, P.C. Painter, M.M. Coleman, Macromolecules 21, 346 (1988) ADSCrossRefGoogle Scholar
  49. 49.
    R. Ayothi, Y. Yi, H.B. Cao, W. Yueh, S. Putna, C.K. Ober, Chem. Mater. 19, 1434 (2007) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • M. Fouchier
    • 1
    Email author
  • E. Pargon
    • 1
  • L. Azarnouche
    • 2
  • K. Menguelti
    • 1
  • O. Joubert
    • 1
  • T. Cardolaccia
    • 3
  • Y. C. Bae
    • 3
  1. 1.Laboratoire des Technologies de la MicroélectroniqueCNRS-LTMGrenoble Cedex 09France
  2. 2.ST MicroelectronicsCrollesFrance
  3. 3.The Dow Chemical Company, Dow Electronic MaterialsMarlboroughUSA

Personalised recommendations