Skip to main content
Log in

Adsorption effect in non-reaction wetting: In–Ti on CaF2

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The experiments show that the alloying liquid In with only (0.1–0.5) at% Ti dramatically reduces the equilibrium contact angle Θ formed by In on the surface of CaF2. The aim of this paper is to clarify whether this practically important and conceptually challenging effect can be explained solely by Ti adsorption at the F-terminated solid–liquid interface without resorting to any other Ti-induced effect. The combination of ab initio calculations and regular solution approximation was proposed for finding the binding energy, ΔE Ti of Ti adatom with the interface “CaF2/liquid solutions In–Ti.” With thus obtained ΔE Ti=1.16 eV, we calculated from the Shishkovsky isotherm the reduction in the solid–liquid interface energy, Δγ SL induced by Ti adsorption from liquid In with various Ti concentration, C. It was found that Δγ SL(C) dependence demonstrated close inverse correspondence with Θ (C) and that the theory fitted very well all available experimental data on the concentration and temperature dependence of Δγ SL. It was concluded that the Ti adsorption effect is large enough to account for the observed wetting improvement. The proposed multiscale modeling approach to the role of adsorption in wetting can be applied also to other nonreactive systems “liquid metal–ceramics” where the substrate determines the surface density of the adsorption sites for the active element.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Eustathopoulos, Curr. Opin. Solid State Mater. Sci. 9, 152 (2005)

    Article  ADS  Google Scholar 

  2. E. Saiz, R. Cannon, A. Tomsia, Acta Mater. 48, 4449 (2000)

    Article  Google Scholar 

  3. V. Naidich, Surface Properties of Melts and Solids and Their Use in Materials Science (Naukova Dumka, Kiev, 1991), Chap. 8, p. 120 (in Russian)

    Google Scholar 

  4. N. Froumin, S. Barzilai, M. Aizenshtein, M. Lomberg, N. Frage, Mater. Sci. Eng. A 495, 181 (2008)

    Article  Google Scholar 

  5. S. Barzilai, N. Argaman, N. Froumin, D. Fuks, N. Frage, Surf. Sci. 603, 2096 (2009)

    Article  ADS  Google Scholar 

  6. J. Howie, Interfaces in Materials (Wiley Interscience, New York, 1997)

    Google Scholar 

  7. A. Adamson, Physical Chemistry of Surfaces (Wiley Interscience, New York, 1979)

    Google Scholar 

  8. S. Barzilai, N. Argaman, N. Froumin, D. Fuks, N. Frage, Surf. Sci. 602, 1517 (2008)

    Article  ADS  Google Scholar 

  9. Y.V. Nikolaenko, G.I. Batalin, E.A. Beloborodova, Yu.V. Vorobei, V.S. Zhuravlev, Zh. Fiz. Khim. 59, 728 (1985) (in Russian)

    Google Scholar 

  10. W. Kohn, P. Vashishta, in Theory of the Inhomogeneous Electron Gas, ed. by B.I. Lundqvist, N.H. March (Plenum, New York, 1983), p. 79

    Google Scholar 

  11. W. Kohn, A.D. Becke, R.G. Parr, J. Phys. Chem. 100, 12974 (1996)

    Article  Google Scholar 

  12. N. Argaman, G. Makov, Am. J. Phys. 68, 69 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. K. Schwarz, P. Blaha, G.K.H. Madsen, Comput. Phys. Commun. 147, 17 (2002)

    Article  Google Scholar 

  14. S. Cottenier, Density Functional Theory and the Family of (L)APWMethods: A Step-by-Step Introduction, Instituut Voor Kern-en Stralingsfysica (K.U. Leuven, Belgium, 2002). ISBN 90-807215-1-4

    Google Scholar 

  15. J. Desclaux, Comput. Phys. Commun. 1, 216 (1969)

    Article  ADS  Google Scholar 

  16. D. Koelling, B.N. Harmon, J. Phys. C, Solid State Phys. 10, 3107 (1977)

    Article  ADS  Google Scholar 

  17. E. Hondros, M. Seah, in Physical Metallurgy, Part II, 3rd edn., ed. by R.W. Cahn, P. Haasen (North-Holland Physics, Amsterdam, 1983), pp. 855–932

    Google Scholar 

  18. V. Puchin, A. Puchina, M. Huisinga, M. Reichling, J. Phys., Condens. Matter 13, 2081 (2001)

    Article  ADS  Google Scholar 

  19. N. Eustathopoulos, M. Nicholas, B. Drevet, Wettability at High Temperatures: Pergamon Materials Series (Pergamon Press, Elmsford, 1999)

    Google Scholar 

  20. S. Barzilai, M. Aizenshtein, M. Lomberg, N. Froumin, N. Frage, Solid State Sci. 9, 338 (2007)

    Article  ADS  Google Scholar 

  21. A. Ubellode, Melting and Crystal Structure (Clarendon Press, London, 1965)

    Google Scholar 

  22. E. Saiz, R. Cannon, A. Tomsia, Acta Mater. 48, 4449 (2000)

    Article  Google Scholar 

  23. E. Saiz, A. Tomsia, Nat. Mater. 3, 903 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Glickman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glickman, E., Fuks, D., Frage, N. et al. Adsorption effect in non-reaction wetting: In–Ti on CaF2 . Appl. Phys. A 106, 181–189 (2012). https://doi.org/10.1007/s00339-011-6546-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6546-2

Keywords

Navigation