Skip to main content
Log in

Controlling aspect ratios of suspended nanorods fabricated by multi-photon polymerization

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanorods are building blocks of three-dimensional photonic crystals and other nanostructures fabricated by multi-photon polymerization with femtosecond laser pulses. The aspect ratios of their cross sections are critical to the in-plane and the interlayer rod distances, which greatly affect the performance. Here we demonstrate the control of aspect ratios from ∼3 to 0.85. At a high scanning speed, aspect ratios can be smaller than unity with a lateral size of ∼150 nm. The results indicate that cylindrical nanorods can be polymerized by the commonly used transverse scanning method to improve the qualities of three-dimensional nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kawata, H.B. Sun, T. Tanaka, K. Takada, Nature 412, 697 (2001)

    Article  ADS  Google Scholar 

  2. M. Farsari, B.N. Chichkov, Nat. Photonics 3, 450 (2009)

    Article  ADS  Google Scholar 

  3. Y.L. Zhang, Q.D. Chen, H. Xia, H.B. Sun, Nano Today 5, 435 (2010)

    Article  Google Scholar 

  4. M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, S. Juodkazis, Opt. Express 18, 10209 (2010)

    Article  ADS  Google Scholar 

  5. S. Maruo, J.T. Fourkas, Laser Photonics Rev. 2, 100 (2008)

    Article  Google Scholar 

  6. K.S. Lee, R.H. Kim, D.Y. Yang, S.H. Park, Prog. Polym. Sci. 33, 631 (2008)

    Article  Google Scholar 

  7. S.H. Park, D.Y. Yang, K.S. Lee, Laser Photonics Rev. 3, 1 (2009)

    Article  Google Scholar 

  8. S. Juodkazis, V. Mizeikis, K.K. Seet, M. Miwa, H. Misawa, Nanotechnology 16, 846 (2005)

    Article  ADS  Google Scholar 

  9. D.F. Tan, Y. Li, F.J. Qi, H. Yang, Q.H. Gong, X.Z. Dong, X.M. Duan, Appl. Phys. Lett. 90, 071106 (2007)

    Article  ADS  Google Scholar 

  10. M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, C.M. Soukoulis, Nat. Mater. 3, 444 (2004)

    Article  ADS  Google Scholar 

  11. M. Gu, B.H. Jia, J.F. Li, M.J. Ventura, Laser Photonics Rev. 4, 414 (2010)

    Article  Google Scholar 

  12. H.B. Sun, S. Matsuo, H. Misawa, Appl. Phys. Lett. 74, 786 (1999)

    Article  ADS  Google Scholar 

  13. M. Farsari, A. Ovsianikov, M. Vamvakaki, I. Sakellari, D. Gray, B.N. Chichkov, C. Fotakis, Appl. Phys. A 93, 11 (2008)

    Article  ADS  Google Scholar 

  14. M. Straub, M. Gu, Opt. Lett. 27, 1824 (2002)

    Article  ADS  Google Scholar 

  15. H.B. Sun, T. Suwa, K. Takada, R.P. Zaccaria, M.S. Kim, K.S. Lee, S. Kawata, Appl. Phys. Lett. 85, 3708 (2004)

    Article  ADS  Google Scholar 

  16. G.V. Freymann, A. Ledermann, M. Thiel, I. Staude, S. Essig, K. Busch, M. Wegener, S. Pereira, C.M. Soukoulis, Adv. Funct. Mater. 20, 1038 (2010)

    Article  Google Scholar 

  17. K.K. Seet, V. Mizeikis, S. Juodkazis, H. Misawa, Appl. Phys. Lett. 88, 221101 (2006)

    Article  ADS  Google Scholar 

  18. Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, H. Misawa, J. Micromech. Microeng. 20, 035004 (2010)

    Article  ADS  Google Scholar 

  19. A. Ovsianikov, S.Z. Xiao, M. Farsari, M. Vamvakaki, C. Fotakis, B.N. Chichkov, Opt. Express 17, 2143 (2009)

    Article  ADS  Google Scholar 

  20. R. Kiyan, C. Reinhardt, S. Passinger, A.L. Stepanov, A. Hohenau, J.R. Krenn, B.N. Chichkov, Opt. Express 15, 4205 (2007)

    Article  ADS  Google Scholar 

  21. H. Luo, Y. Li, H.B. Cui, H.H. Yang, Q.H. Gong, Appl. Phys. A 97, 709 (2009)

    Article  ADS  Google Scholar 

  22. J.K. Gansel, M. Thiel, M.S. Rill, M. Decker, K. Bade, V. Saile, G. Von Freymann, S. Linden, M. Wegener, Science 325, 1513 (2009)

    Article  ADS  Google Scholar 

  23. L.J. Li, R.R. Gattass, E. Gershgoren, H. Hwang, J.T. Fourkas, Science 324, 910 (2009)

    Article  ADS  Google Scholar 

  24. J. Fischer, G. Von Freymann, M. Wegener, Adv. Mater. 22, 3578 (2010)

    Article  Google Scholar 

  25. X.Z. Dong, Z.S. Zhao, X.M. Duan, Appl. Phys. Lett. 92, 091113 (2008)

    Article  ADS  Google Scholar 

  26. H.B. Sun, T. Tanaka, S. Kawata, Appl. Phys. Lett. 80, 3673 (2002)

    Article  ADS  Google Scholar 

  27. T. Tanaka, H.B. Sun, S. Kawata, Appl. Phys. Lett. 80, 312 (2002)

    Article  ADS  Google Scholar 

  28. H.B. Sun, M. Maeda, K. Takada, J.W.M. Chon, M. Gu, S. Kawata, Appl. Phys. Lett. 83, 819 (2003)

    Article  ADS  Google Scholar 

  29. H.B. Sun, K. Takada, M.S. Kim, K.S. Lee, S. Kawata, Appl. Phys. Lett. 83, 1104 (2003)

    Article  ADS  Google Scholar 

  30. N. Uppal, P.S. Shiakolas, J. Micro/Nanolithogr. MEMS MOEMS 7, 043002 (2008)

    Article  Google Scholar 

  31. Y. Li, F.J. Qi, H. Yang, Q.H. Gong, X.Z. Dong, X.M. Duan, Nanotechnology 19, 055303 (2008)

    Article  Google Scholar 

  32. M.Z. Sun, Y. Li, H.B. Cui, H.H. Yang, Q.H. Gong, Appl. Phys. A 100, 177 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, HB., Li, Y., Liu, ZP. et al. Controlling aspect ratios of suspended nanorods fabricated by multi-photon polymerization. Appl. Phys. A 105, 897–901 (2011). https://doi.org/10.1007/s00339-011-6539-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6539-1

Keywords

Navigation