Advertisement

Applied Physics A

, Volume 105, Issue 4, pp 987–990 | Cite as

Measurement and simulation of specific heat for metastable liquid Ni80Fe10Cu10 alloy

  • H. P. Wang
  • S. B. Luo
  • B. WeiEmail author
Article

Abstract

The specific heat of undercooled liquid Ni80Fe10Cu10 alloy was experimentally measured by electromagnetic levitation drop calorimeter, and also numerically simulated by the molecular dynamics method. The achieved maximum undercooling is up to 252 K (0.15 T L) in the experiments, and the measured result is 41.67 J mol−1 K−1. The simulation provides calculated data within 0∼702 K undercooling range, which is much broader than the experimental regime. The simulated value is 37.02 J mol−1 K−1. Although there exists a difference of 4.65 J mol−1 K−1 between them, the result is quite acceptable for simulation. Furthermore, the liquid structure of undercooled Ni80Fe10Cu10 alloy is studied in terms of the total and partial pair distribution functions, which display that the ordered degree of atoms enhances from a normal liquid to metastable state.

Keywords

Differential Scanning Calorimetry Liquid Alloy Molecular Dynamic Method Liquid Structure Normal Liquid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U.R. Pedersen, T.B. Schroder, J.C. Dyre, P. Harrowell, Phys. Rev. Lett. 104, 105701 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    I. Saika-Voivod, R.K. Bowles, P.H. Poole, Phys. Rev. Lett. 103, 225701 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    S.M. Chathoth, B. Damaschke, K. Samwer, S. Schneider, Appl. Phys. Lett. 93, 071902 (2008) ADSCrossRefGoogle Scholar
  4. 4.
    H.P. Wang, B. Wei, J. Phys. D, Appl. Phys. 42, 035414 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    P.F. Paradis, T. Ishikawa, N. Koike, Microgravity Sci. Technol. 21, 113 (2009) CrossRefGoogle Scholar
  6. 6.
    J.J.Z. Li, W.L. Johnson, W.K. Rhim, Appl. Phys. Lett. 89, 111913 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    Y.L. Sun, J. Shen, A.A. Valladares, J. Appl. Phys. 106, 073520 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    N. Jakse, A. Pasturel, Phys. Rev. B 79, 144206 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    A.E. Gheribi, Mater. Chem. Phys. 116, 489 (2009) CrossRefGoogle Scholar
  10. 10.
    M.I. Baskes, Phys. Rev. B 46, 2727 (1992) ADSCrossRefGoogle Scholar
  11. 11.
    J. Brillo, I. Egry, T. Matsushita, Z.F. Metallkde 97, 28 (2006) Google Scholar
  12. 12.
    H.P. Wang, J. Chang, B. Wei, Phys. Lett. A 374, 2489 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    M. Barth, F. Joo, B. Wei, D.M. Herlach, J. Non-Cryst. Solids 156–158, 398 (1993) CrossRefGoogle Scholar
  14. 14.
    K. Schaefers, M. Rosner-Kuhn, M.G. Frohberg, Mater. Sci. Eng. A 197, 83 (1995) CrossRefGoogle Scholar
  15. 15.
    N. Wang, X.J. Han, B. Wei, Appl. Phys. Lett. 80, 28 (2002) ADSCrossRefGoogle Scholar
  16. 16.
    T. Iida, R.I.L. Guthrie, The Physical Properties of Liquid Metals (Clarendon Press, Oxford, 1993) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Applied PhysicsNorthwestern Polytechnical UniversityXi’anP.R. China

Personalised recommendations