Skip to main content
Log in

Electrical conductivity of metal powders under pressure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A model for calculating the electrical conductivity of a compressed powder mass consisting of oxide-coated metal particles has been derived. A theoretical tool previously developed by the authors, the so-called ‘equivalent simple cubic system’, was used in the model deduction. This tool is based on relating the actual powder system to an equivalent one consisting of deforming spheres packed in a simple cubic lattice, which is much easier to examine. The proposed model relates the effective electrical conductivity of the powder mass under compression to its level of porosity. Other physically measurable parameters in the model are the conductivities of the metal and oxide constituting the powder particles, their radii, the mean thickness of the oxide layer and the tap porosity of the powder. Two additional parameters controlling the effect of the descaling of the particle oxide layer were empirically introduced. The proposed model was experimentally verified by measurements of the electrical conductivity of aluminium, bronze, iron, nickel and titanium powders under pressure. The consistency between theoretical predictions and experimental results was reasonably good in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Torre, Berg- Hüttenmänn. Monatsh. 93, 62 (1948)

    Google Scholar 

  2. V.V. Skorokhod, I.F. Martynova, Powder Metall. Met. Ceram. 4, 70 (1977)

    Google Scholar 

  3. V.M. Segal, V.I. Reznikov, V.I. Malyshev, V.I. Solov’ev, Powder Metall. Met. Ceram. 6, 26 (1979)

    Google Scholar 

  4. T.J. Garino, J. Mater. Res. 17(10), 2691 (2002)

    Article  ADS  Google Scholar 

  5. L.P. Lefebvre, G. Pleizier, Y. Deslandes, Powder Metall. Met. Ceram. 44(3), 259 (2001)

    Google Scholar 

  6. A.L. Efros, Physics and Geometry of Disorder. Percolation Theory (Mir, Moscow, 1985)

    Google Scholar 

  7. S. Torquato, Random heterogeneous materials, in Interdisciplinary Applied Mathematics, vol. 16 (Springer, New York, 2002)

    Google Scholar 

  8. M. Sahimi, Heterogeneous materials I, in Interdisciplinary Applied Mathematics, vol. 22 (Springer, New York, 2003)

    Google Scholar 

  9. A.T. Procopio, A. Zavaliangos, J. Mech. Phys. Solids 53, 1523 (2005)

    Article  ADS  MATH  Google Scholar 

  10. J.M. Montes, F.G. Cuevas, J. Cintas, J.A. Rodríguez, E.J. Herrerra, The equivalent simple cubic system, in Trends in Materials Science Research, ed. by B.M. Caruta (Nova Science, New York, 2005), pp. 157–190

    Google Scholar 

  11. J.M. Montes, F.G. Cuevas, J. Cintas, Appl. Phys. A 99, 751 (2010)

    Article  ADS  Google Scholar 

  12. J.M. Montes, F.G. Cuevas, J. Cintas, Mater. Sci. Eng. A Struct. 395, 208 (2005)

    Article  Google Scholar 

  13. J.M. Montes, F.G. Cuevas, J. Cintas, Granul. Matter 9, 401 (2007)

    Article  Google Scholar 

  14. J.M. Montes, F.G. Cuevas, J. Cintas, Appl. Phys. A 92, 375 (2008)

    Article  ADS  Google Scholar 

  15. J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon, Oxford, 1904)

    Google Scholar 

  16. R. Holm, Electric Contacts: Theory and Applications, 4th edn. (Springer, New York, 1967)

    Google Scholar 

  17. R.M. German, Particle Packing Characteristics (MPIF, Metal Powder Industries Federation, Princeton, 1989)

    Google Scholar 

  18. K.J. Euler, J. Power Sources 3, 117 (1978)

    Article  Google Scholar 

  19. MPIF Standard 46, Determination of tap density of metal powders, in Standard Test Methods for Metal Powders and Powder Metallurgy Products (MPIF, Metal Powder Industries Federation, Princeton, 2002)

    Google Scholar 

  20. W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics, 2nd edn. (Wiley, New York, 1976)

    Google Scholar 

  21. N. Tsuda, K. Nasu, A. Fujimori, K. Siratori, Electronic Conduction in Oxides, 2nd edn. (Springer, New York, 2000)

    Google Scholar 

  22. A.A. Akl, Appl. Surf. Sci. 221, 319 (2004)

    Article  ADS  Google Scholar 

  23. G. Wakefield, P.J. Dobson, Y.Y. Foo, A. Loni, A. Simons, J.L. Hutchison, Semicond. Sci. Technol. 12, 1304 (1997)

    Article  ADS  Google Scholar 

  24. E.A. Brandes (ed.), Smithells Metals Reference Book, 6th edn. (Butterworth, London, 1983)

    Google Scholar 

  25. U.R. Evans, The Corrosion and Oxidation of Metals: First Supplementary Volume (Edward Arnold, London, 1968)

    Google Scholar 

  26. W.-T. Li, D.R. McKenzie, W.D. McFall, Q.-Ch. Zhang, W. Wiszniewski, Solid-State Electron. 44, 1557 (2000)

    Article  ADS  Google Scholar 

  27. V.F. Drobny, D.L. Pulfrey, Thin Solid Films 61, 89 (1979)

    Article  ADS  Google Scholar 

  28. K.W. Vogt, P.A. Kohl, W.B. Carter, R.A. Bell, L.A. Bottomley, Surf. Sci. 301, 203 (1994)

    Article  ADS  Google Scholar 

  29. A.M. Huntz, M. Andrieux, R. Molins, Mater. Sci. Eng. A Struct. 417, 8 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Montes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montes, J.M., Cuevas, F.G., Cintas, J. et al. Electrical conductivity of metal powders under pressure. Appl. Phys. A 105, 935–947 (2011). https://doi.org/10.1007/s00339-011-6515-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6515-9

Keywords

Navigation