Skip to main content
Log in

Arbitrary control of the electromagnetic field in two-dimensional waveguide and slit using metamaterials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The distribution of the electromagnetic field in a waveguide or slit is generally dependent on its shape and size. In this paper, we develop a general method to arbitrarily control the electromagnetic field through metamaterials, of which permittivity and/or permeability can be designed to continuously change from negative to positive values. With this method, the field distribution in a two-dimensional arbitrarily shaped waveguide or slit is totally dependent on the electromagnetic properties of metamaterials filled inside, but not on its shape or size. Permittivity and permeability of the metamaterials are derived, and transmission properties in the waveguide and slit are validated by numerical simulation. Results show that the field distribution inside the waveguide and slit can be easily controlled by the metamaterials. It provides a feasible way to control the electromagnetic field distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Pendry, D. Schurig, D.R. Smith, Science 312, 1780 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. U. Leonhardt, Science 312, 1777 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Science 314, 977 (2006)

    Article  ADS  Google Scholar 

  4. U. Leonhardt, T. Tyc, Science 323, 110 (2009)

    Article  ADS  Google Scholar 

  5. R. Liu, C. Ji, J.J. Mock, J.Y. Chin, T.J. Cui, D.R. Smith, Science 323, 366 (2009)

    Article  ADS  Google Scholar 

  6. J. Valentine, J. Li, T. Zentgraf, G. Bartal, X. Zhang, Nat. Mater. 8, 568 (2009)

    Article  ADS  Google Scholar 

  7. C.F. Yang, M. Huang, J.J. Yang, Z. Xiao, J.H. Peng, Opt. Express 19, 1147 (2011)

    Article  ADS  Google Scholar 

  8. J.B. Pendry, Opt. Express 11, 755 (2003)

    Article  ADS  Google Scholar 

  9. M. Huang, J.J. Yang, in Wave Propagation, pp. 13–36. ed. by A. Petrin (Intech Press, Vienna, 2011), Chap. 2

    Google Scholar 

  10. J.J. Yang, T.H. Li, M. Huang, M. Cheng, Appl. Phys. A, Mater. Sci. Process. (2011). doi:10.1007/s00339-011-6330-3

    Google Scholar 

  11. M. Rahm, D. Schurig, D.A. Roberts, S.A. Cummer, D.R. Smith, J.B. Pendry, Photonics Nanostruct. Fundam. Appl. 6, 87 (2008)

    Article  ADS  Google Scholar 

  12. J.J. Yang, M. Huang, C.F. Yang, Z. Xiao, J.H. Peng, Opt. Express 17, 19656 (2009)

    Article  ADS  Google Scholar 

  13. J.J. Yang, M. Huang, J.H. Peng, Radioengineering 18, 124 (2009)

    Google Scholar 

  14. J.J. Yang, M. Huang, J.H. Peng, Z. Xiao, Int. J. Electron. Commun. (2010). doi:10.1016/j.aeue.2010.08.002

    Google Scholar 

  15. T. Yang, H.Y. Chen, X.D. Luo, H.R. Ma, Opt. Express 16, 18545 (2008)

    Article  ADS  Google Scholar 

  16. C.F. Yang, J.J. Yang, M. Huang, J.H. Peng, G.H. Cai, Comput. Mater. Sci. 49, 820 (2010)

    Article  Google Scholar 

  17. J. Ng, H.Y. Chen, C.T. Chan, Opt. Lett. 34, 644 (2009)

    Article  ADS  Google Scholar 

  18. J.J. Yang, M. Huang, C.H. Yang, J.H. Peng, R. Zong, Energies 3, 1335 (2010)

    Article  Google Scholar 

  19. Z.Y. Wang, Y. Luo, W.Z. Cui, W. Ma, L. Peng, H.S. Chen, Appl. Phys. Lett. 94, 234101 (2009)

    Article  ADS  Google Scholar 

  20. X.H. Zhang, H.Y. Chen, X.D. Luo, H.R. Ma, Opt. Express 16, 11764 (2008)

    Article  ADS  Google Scholar 

  21. X.F. Zang, C. Jiang, Opt. Express 18, 10168 (2010)

    Article  ADS  Google Scholar 

  22. P.H. Tichit, S.N. Burokur, A. de Lustrac, Opt. Express 18, 767 (2010)

    Article  ADS  Google Scholar 

  23. W.Q. Ding, D.H. Tang, Y. Liu, L.X. Chen, X.D. Sun, Appl. Phys. Lett. 96, 041102 (2010)

    Article  ADS  Google Scholar 

  24. K. Zhang, Q. Wu, F.Y. Meng, L.W. Li, Opt. Express 18, 17273 (2010)

    Article  ADS  Google Scholar 

  25. F.Y. Meng, K. Zhang, F. Zhang, Q. Wu, J.C. Lee, Appl. Phys. A, Mater. Sci. Process. 102, 509 (2011)

    Article  ADS  Google Scholar 

  26. F.Y. Meng, Q. Wu, L.W. Li, Appl. Phys. A, Mater. Sci. Process. 94, 747 (2009)

    Article  ADS  Google Scholar 

  27. W.X. Jiang, T.J. Cui, H.F. Ma, X.M. Yang, Q. Cheng, Appl. Phys. Lett. 93, 221906 (2008)

    Article  ADS  Google Scholar 

  28. K. Aydin, A.O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, E. Ozbay, Phys. Rev. Lett. 102, 013904 (2009)

    Article  ADS  Google Scholar 

  29. D. Schurig, J.B. Pendry, D.R. Smith, Opt. Express 14, 9794 (2006)

    Article  ADS  Google Scholar 

  30. B. Wood, J.B. Pendry, Phys. Rev. B 74, 115116 (2006)

    Article  ADS  Google Scholar 

  31. Z.W. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, Science 315, 1686 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., Yang, J., Huang, M. et al. Arbitrary control of the electromagnetic field in two-dimensional waveguide and slit using metamaterials. Appl. Phys. A 105, 509–515 (2011). https://doi.org/10.1007/s00339-011-6505-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6505-y

Keywords

Navigation