Applied Physics A

, 104:1021

Fabrication of silver nanoparticles by highly intense laser irradiation of aqueous solution

  • Takahiro Nakamura
  • Hideyuki Magara
  • Yuliati Herbani
  • Shunichi Sato
Article

Abstract

Silver (Ag) nanoparticles were fabricated by highly intense femtosecond laser irradiation of aqueous solutions of silver nitrate (AgNO3) with various concentrations. After irradiation, a broad absorption peak at around 420 nm originating from surface plasmon resonance of Ag nanoparticles was observed in 30 and 300 mM solutions. Transmission electron microscopy revealed that Ag nanoparticles produced in 300 mM AgNO3 solution had a typical size in the range of 2 to 20 nm and a mean size of 4 nm. The addition of 1.0×10−2 wt% polyvinylpyrrolidone as a dispersant to the 300 mM solution caused a narrower particle size distribution as well as a narrower absorption peak width after the laser irradiation. As a result, Ag nanoparticles with a mean particle size of about 2 nm were fabricated.

References

  1. 1.
    Z. Yang, J. Lia, X. Yang, X. Xie, Y. Wu, J. Mol. Catal. A, Chem. 241, 15 (2005) CrossRefGoogle Scholar
  2. 2.
    T.C. Chuang, Y.C. Liu, C.C. Wang, J. Raman Spectrosc. 36, 704 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    L. Ming, Med. Res. Rev. 23, 697 (2003) CrossRefGoogle Scholar
  4. 4.
    D. Dorjnamjin, M. Ariunaa, Y.K. Shim, Int. J. Mol. Sci. 9, 807 (2008) CrossRefGoogle Scholar
  5. 5.
    J. Jiang, B. Winther-Jensen, E.M. Kjær, Macromol. Symp. 239, 84 (2006) CrossRefGoogle Scholar
  6. 6.
    H.J. Han, S.M. Koo, J. Sol-Gel Sci. Technol. 26, 467 (2003) CrossRefGoogle Scholar
  7. 7.
    C. Luo, Y. Zhan, X. Zeng, Y. Zeng, Y. Wang, J. Colloid Interface Sci. 288, 444 (2005) CrossRefGoogle Scholar
  8. 8.
    P. Seuta, A. Chakraborty, D. Seth, M.U. Bhatta, P.V. Satyam, N. Sarka, J. Phys. Chem. C 111, 3901 (2007) CrossRefGoogle Scholar
  9. 9.
    I.M. Ramirez, S. Bashir, Z. Luo, J.L. Liu, Colloids Surf. B, Biointerfaces 73, 185 (2009) CrossRefGoogle Scholar
  10. 10.
    M. Procházka, P. Mojzeš, J. Štěpánek, B. Vlčková, P.Y. Turpin, Anal. Chem. 69, 5103 (1997) CrossRefGoogle Scholar
  11. 11.
    I. Srnová, M. Procházka, B. Vlčková, J. Štěpánek, P. Malý, Langmuir 14, 4666 (1998) CrossRefGoogle Scholar
  12. 12.
    F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem. B 104, 8333 (2000) CrossRefGoogle Scholar
  13. 13.
    C.H. Bae, S.H. Nam, S.M. Park, Appl. Surf. Sci. 197–198, 628 (2002) CrossRefGoogle Scholar
  14. 14.
    R.A. Ganeev, M. Baba, A.I. Ryasnyansky, M. Suzuki, H. Kuroda, Opt. Commun. 240, 437 (2004) ADSCrossRefGoogle Scholar
  15. 15.
    T. Tsuji, D.-H. Thang, Y. Okazaki, M. Nakanishi, Y. Tsuboi, M. Tsuji, Appl. Surf. Sci. 254, 5224 (2008) ADSCrossRefGoogle Scholar
  16. 16.
    T. Nakamura, Y. Mochidzuki, S. Sato, J. Mater. Res. 23, 968 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    T. Nakamura, K. Takasaki, A. Ito, S. Sato, Appl. Surf. Sci. 255, 9630 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    S.L. Chin, S. Lagacé, Appl. Opt. 35, 907 (1996) ADSCrossRefGoogle Scholar
  19. 19.
    U. Kreibig, L. Genzel, Surf. Sci. 156, 678 (1985) ADSCrossRefGoogle Scholar
  20. 20.
    S. Mochizuki, R. Ruppin, J. Phys., Condens. Matter 5, 135 (1993) ADSCrossRefGoogle Scholar
  21. 21.
    J. Belloni, M. Mostafavi, H. Ramita, J.-L. Marignier, M.-O. Delcourt, New J. Chem. 22, 1239 (1998) CrossRefGoogle Scholar
  22. 22.
    S. Seino, T. Kinoshita, T. Nakagawa, T. Kojima, R. Taniguci, S. Okuda, T.A. Yamamoto, J. Nanopart. Res. 10, 1071 (2008) CrossRefGoogle Scholar
  23. 23.
    J. Hieda, N. Saito, O. Takai, J. Vac. Sci. Technol., A, Vac. Surf. Films 26, 854 (2008) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Takahiro Nakamura
    • 1
  • Hideyuki Magara
    • 1
  • Yuliati Herbani
    • 1
  • Shunichi Sato
    • 1
  1. 1.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendaiJapan

Personalised recommendations