Skip to main content
Log in

Dispersion of laser droplets using H+ ions and annealing effect on pulsed laser deposited nickel ferrite thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nickel ferrite thin films were deposited by a pulsed laser deposition (PLD) technique on silicon substrate at room temperature in a vacuum of 5×10−5 mbar. The films were subjected to different annealing temperatures from 300–900°C and were also exposed to single shot energetic hydrogen ions using a Dense Plasma Focus (DPF) device. The changes induced in the films exposed at different distances from the top of the anode were investigated. The structural, morphological and magnetic properties of the annealed and exposed samples were investigated. X-ray diffraction (XRD) studies reveal the presence of a single phase of nickel ferrite after annealing. SEM micrographs indicate an increase in the grain size, both on annealing as well as on exposure to hydrogen ions. Annealing and hydrogen ion irradiation induced an enhancement in the magnetic moments. Laser droplets which are inherent in films deposited by laser ablation were found to be dispersed as a result of single shot hydrogen ion irradiation from the DPF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Healy Daniel Jr., R.A. Johnson, Phys. Rev. 104, 634 (1956)

    Article  ADS  Google Scholar 

  2. L.G. Antoshina, A.B. Korshak, Phys. Solid State 51, 949 (2009)

    Article  ADS  Google Scholar 

  3. V.P.M. Shafi-Kurikka, Y. Koltypin, A. Gedanken, R. Prozorov, J. Balogh, J. Lendvai, I. Felner, J. Phys. Chem. B 101, 6409 (1997)

    Article  Google Scholar 

  4. B. Martinez, T. Obradors, L. Balcells, A. Rounanet, C. Monty, Phys. Rev. Lett. 80, 181 (1998)

    Article  ADS  Google Scholar 

  5. J. Ding, T. Reynolds, W.F. Miao, P.G. McCormick, R. Street, Appl. Phys. Lett. 65, 3135 (1994)

    Article  ADS  Google Scholar 

  6. C. Xiangfeng, J. Dongle, Z. Chenmou, Sens. Actuators A, Phys. 123, 793 (2007)

    Google Scholar 

  7. R.H. Kodama, A.E. Berkowitz, E.J. McNiff, S. Foner, Phys. Rev. Lett. 77, 394 (1996)

    Article  ADS  Google Scholar 

  8. Y. Chung, S. Park, D. Kang, Mater. Chem. Phys. 86, 375 (2004)

    Article  Google Scholar 

  9. S. Venzke, R.B. Vandover, J.M. Phillips, E.M. Gyorgy, T. Siegrist, C.H. Chen, D. Werder, R.M. Fleming, R.J. Felder, E. Coleman, R. Opila, J. Mater. Res. 11, 1187 (1996)

    Article  ADS  Google Scholar 

  10. T. Tsuchiya, H. Yamashiro, T. Sci, T. Inamura, J. Mater. Sci. 27, 3645 (1992)

    Article  ADS  Google Scholar 

  11. B. Negulescu, L. Thomas, Y. Dumont, M. Tessier, N. Keller, M. Guyot, J. Magn. Magn. Mater. 242, 529 (2002)

    Article  ADS  Google Scholar 

  12. H. Kawasaki, K. Doi, S. Hiraishi, Y. Suda, Thin Solid Films 374, 278 (2000)

    Article  ADS  Google Scholar 

  13. T. Yoshitake, K. Nagayama, Vacuum 74, 515 (2004)

    Article  Google Scholar 

  14. K. Ebihara, S.M. Park, K. Fujii, T. Ikegami, Diam. Relat. Mater. 15, 989 (2006)

    Article  ADS  Google Scholar 

  15. T. Hino, S. Mustofa, M. Nishida, T. Araki, Vacuum 70, 47 (2003)

    Article  Google Scholar 

  16. J.J. Lin, M.V. Roshan, Z.Y. Pan, R. Verma, P. Lee, S.V. Springham, T.L. Tan, R.S. Rawat, J. Phys. D, Appl. Phys. 41, 135213 (2008)

    Article  ADS  Google Scholar 

  17. G. Gerdin, W. Stygar, F. Venneri, J. Appl. Phys. 52, 3269 (1981)

    Article  ADS  Google Scholar 

  18. H. Kelley, A. Marquez, Plasma Phys. Control. Fusion 38, 1931 (1996)

    Article  ADS  Google Scholar 

  19. International Centre for Diffraction Data, JCPDS, Card No. PDIS-20iRB (1979)

  20. A.S. Albuquerque, J.D. Ardissona, W.A.A. Macedoa, J.L. Lpezb, R. Paniagob, A.I.C. Persianob, J. Magn. Magn. Mater. 226–230, 1379 (2001)

    Article  Google Scholar 

  21. J.F. Zigler, J.P. Biersack, SRIM 2003.20

  22. I. Yamada, J. Matsuo, N. Toyoda, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 206, 820 (2003)

    Article  ADS  Google Scholar 

  23. V.N. Popek, S.V. Prasalovich, E.E.B. Campbell, Surf. Sci. 566–568, 1179 (2004)

    Article  Google Scholar 

  24. H.A. Atwer, C.V. Thompson, H.I. Smith, Phys. Rev. Lett. 60, 112 (1988)

    Article  ADS  Google Scholar 

  25. D.E. Alexander, G.S. Was, L.E. Rahn, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 59/60, 462 (1991)

    Article  ADS  Google Scholar 

  26. A. Crespo-Sosa, M. Munoz, J.C. Cheang-Wong, A. Oliver, J.M. Saniger, J.G. Banuelos, Appl. Surf. Sci. 206, 178 (2003)

    Article  ADS  Google Scholar 

  27. H. Kelly, A. Lepone, A. Marquez, M.J. Sadowski, J. Baranowski, E.S. Sadowska, IEEE Trans. Plasma Sci. 26, 113 (1998)

    Article  ADS  Google Scholar 

  28. R. Malik, S. Annapoorni, S. Lamba, P. Sharma, A. Inoue, J. Appl. Phys. 104, 064317 (2008)

    Article  ADS  Google Scholar 

  29. M. George, A.M. John, S.S. Nair, P.A. Joy, M.R. Anantharaman, J. Magn. Magn. Mater. 302, 190 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Annapoorni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malik, R., Annapoorni, S., Lamba, S. et al. Dispersion of laser droplets using H+ ions and annealing effect on pulsed laser deposited nickel ferrite thin films. Appl. Phys. A 105, 233–238 (2011). https://doi.org/10.1007/s00339-011-6495-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6495-9

Keywords

Navigation