Advertisement

Applied Physics A

, 105:211 | Cite as

Surface tension measurement of metastable liquid Ti–Al–Nb alloys

  • K. Zhou
  • H. P. Wang
  • J. Chang
  • B. WeiEmail author
Article

Abstract

Thermophysical properties of liquid alloys are usually difficult to measure, especially for high melting point and reactive alloys. In this work, the surface tensions of superheated and undercooled liquid Ti55Al45, Ti50Al45Nb5 and Ti45Al45Nb10 alloys are determined by using oscillating drop method under electromagnetic levitation state. The experimental results of Ti–Al and Ti–Al–Nb alloys display linear temperature dependence. The maximum undercoolings of 259 (0.143T L), 268 (0.146T L) and 275 K (0.147T L) are respectively achieved for these three alloys. Furthermore, the viscosities of liquid Ti55−x Al45Nb x alloys are also derived from the experimental results.

Keywords

Surface Tension Thermophysical Property Liquid Alloy Surface Oscillation Linear Temperature Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.M. Chathoth, B. Damaschke, K. Samwer, S. Schneider, Appl. Phys. Lett. 93 (2008) Google Scholar
  2. 2.
    H.P. Wang, B.C. Luo, B. Wei, Phys. Rev. E 78, 041204 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    I. Egry, J. Brillo, D. Holland-Moritz, Y. Plevachuk, Mater. Sci. Eng. A 495, 14 (2008) CrossRefGoogle Scholar
  4. 4.
    Y.S. Sung, D.S. Bae, T.K. Song, M.H. Kim, H. Takeya, K. Hirata, K. Togano, Appl. Phys. Lett. 88 (2006) Google Scholar
  5. 5.
    P.-F. Paradis, T. Ishikawa, S. Yodam, J. Appl. Phys. 97 (2005) Google Scholar
  6. 6.
    S. Mukherjee, W.L. Johnson, W.K. Rhim, Appl. Phys. Lett. 86 (2005) Google Scholar
  7. 7.
    H.P. Wang, C.D. Cao, B. Wei, Appl. Phys. Lett. 84 (2004) Google Scholar
  8. 8.
    X.J. Han, N. Wang, B. Wei, Philos. Mag. Lett. 82 (2002) Google Scholar
  9. 9.
    J. Miettinen, Comput. Mat. Sci. 22, 240 (2001) CrossRefGoogle Scholar
  10. 10.
    G.Z. Kang, W.Y. Yan, Appl. Phys. Lett. 94, 261906 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    N. Velisavljevic, G.N. Chesnut, Appl. Phys. Lett. 91, 101906 (2007) ADSCrossRefGoogle Scholar
  12. 12.
    J. Lapin, T. Pelechova, M. Domankova, D. Daloz, M. Nazmy, Metall. Mater. 45, 121 (2007) Google Scholar
  13. 13.
    R. Nowak, T. Lanata, N. Sobczak, E. Ricci, D. Giuranno, R. Novakovic, D. Holland-Moritz, I. Egry, J. Mater. Sci. 45, 1993 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    I. Egry, R. Brooks, D. Holland-Moritz, R. Novakovic, T. Matsushita, E. Ricci, S. Seetharaman, R. Wunderlich, D. Jarvis, Int. J. Thermophys. 28, 1026 (2007) ADSCrossRefGoogle Scholar
  15. 15.
    I. Egry, D. Holland-Moritz, R. Novakovic, E. Ricci, R. Wunderlich, N. Sobczak, Int. J. Thermophys. 31, 949 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    D.J. Jarvis, D. Voss, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 583, 413 (2005) Google Scholar
  17. 17.
    K. Zhou, H.P. Wang, J. Chang, B. Wei, Appl. Phys. A 103, 135 (2011) ADSCrossRefGoogle Scholar
  18. 18.
    H. Kestler, H. Clemens, in Titanium and Titanium Alloys, ed. by M. Peters, C. Leyens (Wiley-VCH, Weinheim, 2003) Google Scholar
  19. 19.
    J.W. Strutt (Lord Rayleigh), Proc. R. Soc. London 29 (1879) Google Scholar
  20. 20.
    D.L. Cummings, D.A. Blackburn, J. Fluid Mech. 224 (1991) Google Scholar
  21. 21.
    T. Iida, R.I.L. Guthrie, The Physical Properties of Liquid Metals (Oxford University Press/Claredon, London/Oxford, 1993) Google Scholar
  22. 22.
    K. Zhou, H.P. Wang, J. Chang, B. Wei, Philos. Mag. Lett. 90, 455 (2010) ADSCrossRefGoogle Scholar
  23. 23.
    I. Egry, Scripta. Metall. Mater. 28 (1993) Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Applied PhysicsNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations