Skip to main content
Log in

Sb2Te3–HfO2 composite films for low-power phase change memory application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of HfO2 on phase change characteristics of Sb2Te3 films for phase change memory (PCM) applications was investigated by in situ temperature dependence of electrical resistance measurement, X-ray diffraction, field emission scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. It is shown that HfO2 inhibited the crystallization of the amorphous Sb2Te3 films, which improved the long-term stability of metastable amorphous phase. Memory devices based on Sb2Te3–HfO2 composite films with HfO2 concentrations of 10 at.% and 15 at.% were successfully fabricated and characterized. The 15 at.% HfO2-based memory device exhibited lower reset voltage and power consumption compared with the 10 at.% HfO2- and Ge2Sb2Te5-based ones. The endurances exceeded 1.6×105 and 2.2×105 SET–RESET cycles for 10 at.% and 15 at.% HfO2-based memory devices, respectively, and the resistance ratio between RESET and SET states achieved two orders of magnitude for both memory devices. The Sb2Te3–HfO2 composite films, especially with HfO2 concentration of 15 at.%, could be one of the most promising materials for application in PCM devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bez, A. Pirovano, Mater. Sci. Semicond. Process. 7, 349 (2004)

    Article  Google Scholar 

  2. D. Ielmini, D. Mantegazza, A.L. Lacaita, A. Pirovano, F. Pellizzer, Solid-State Electron. 49, 1826 (2005)

    Article  ADS  Google Scholar 

  3. A.L. Lacaita, Solid-State Electron. 50, 24 (2006)

    Article  ADS  Google Scholar 

  4. G.W. Burr, M.J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L.A. Lastras, A. Padilla, B. Rajendran, S. Raoux, R.S. Shenoy, J. Vac. Sci. Technol. B 28, 223 (2010)

    Article  Google Scholar 

  5. H. Lv, P. Zhou, Y. Lin, T. Tang, B. Qiao, Y. Lai, J. Feng, B. Cai, B. Chen, Microelectron. J. 37, 982 (2006)

    Article  Google Scholar 

  6. B. Qiao, J. Feng, Y. Lai, Y. Ling, Y. Lin, T. Tang, B. Cai, B. Chen, Appl. Surf. Sci. 252, 8404 (2006)

    Article  ADS  Google Scholar 

  7. M.H.R. Lankhorst, L. v. Pieterson, M. v. Schijndel, B.A.J. Jacobs, J.C.N. Rijpers, Jpn. J. Appl. Phys. 42, 863 (2003)

    Article  ADS  Google Scholar 

  8. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, J. Appl. Phys. 69, 2849 (1991)

    Article  ADS  Google Scholar 

  9. F. Wang, T. Zhang, Z. Song, C. Liu, L. Wu, B. Liu, S. Feng, B. Chen, Jpn. J. Appl. Phys. 47, 843 (2008)

    Article  ADS  Google Scholar 

  10. S.Y. Lee, S.H. Cho, H.K. Kim, J.H. Oh, H.J. Kim, S.K. Hong, J.S. Roh, D.J. Choi, J. Ceram. Process. Res. 10, 433 (2009)

    Google Scholar 

  11. Y. Yin, H. Sone, S. Hosaka, J. Appl. Phys. 102, 064503 (2007)

    Article  ADS  Google Scholar 

  12. M.H. Jang, S.J. Park, D.H. Lim, S.J. Park, M.-H. Cho, D.-H. Ko, M.Y. Heo, H.C. Sohn, S.-O. Kim, Appl. Phys. Lett. 96, 052112 (2010)

    Article  ADS  Google Scholar 

  13. J. Feng, Z.F. Zhang, Y. Zhang, B.C. Cai, Y.Y. Lin, T.A. Tang, B. Chen, J. Appl. Phys. 101, 074502 (2007)

    Article  ADS  Google Scholar 

  14. X.L. Zhou, L.C. Wu, Z.T. Song, F. Rao, B. Liu, D.N. Yao, W.J. Yin, J.T. Li, S.L. Feng, B.M. Chen, Appl. Phys. Express 2, 091401 (2009)

    Article  ADS  Google Scholar 

  15. K. Ren, F. Rao, Z. Song, L. Wu, X. Zhou, B. Liu, S. Feng, W. Xi, B. Chen, Jpn. J. Appl. Phys. 49, 080212 (2010)

    Article  ADS  Google Scholar 

  16. T.-Y. Lee, K.H.P. Kim, D.-S. Suh, C. Kim, Y.-S. Kang, D.G. Cahill, D. Lee, M.-H. Lee, M.-H. Kwon, K.-B. Kim, Y. Khang, Appl. Phys. Lett. 94, 243103 (2009)

    Article  ADS  Google Scholar 

  17. S.W. Ryu, J.H. Lee, Y.B. Ahn, C.H. Kim, B.S. Yang, G.H. Kim, S.G. Kim, S.H. Lee, C.S. Hwang, H.J. Kim, Appl. Phys. Lett. 95, 112110 (2009)

    Article  ADS  Google Scholar 

  18. S. Song, Z. Song, B. Liu, L. Wu, S. Feng, Mater. Lett. 64, 317 (2010)

    Article  Google Scholar 

  19. E.J. Huber, C.E. Holley, J. Chem. Eng. Data 13, 252 (1968)

    Article  Google Scholar 

  20. Y. Zhang, J. Feng, B.C. Cai, Semicond. Sci. Technol. 24, 045016 (2009)

    Article  ADS  Google Scholar 

  21. I.V. Karpov, M. Mitra, D. Kau, G. Spadini, Y.A. Kryukov, V.G. Karpov, J. Appl. Phys. 102, 124503 (2007)

    Article  ADS  Google Scholar 

  22. M. Mitra, Y. Jung, D.S. Gianola, R. Agarwal, Appl. Phys. Lett. 96, 222111 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yegang Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Song, S., Song, Z. et al. Sb2Te3–HfO2 composite films for low-power phase change memory application. Appl. Phys. A 105, 183–188 (2011). https://doi.org/10.1007/s00339-011-6478-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6478-x

Keywords

Navigation