Skip to main content
Log in

Synthesis and characterization of nitrogen-rich carbon nitride nanobelts by pyrolysis of melamine

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nitrogen-rich g-C3N4 nanobelts were successfully synthesized via pyrolysis of melamine (C3N6H6). The as-synthesized nanobelts are structurally uniform, and each belt is uniform in width and thickness along its length direction. The typical width is in the range of 600 nm and 1.5 μm, respectively. The typical length of belts is in the range of several hundreds of micrometers; some of them even have lengths on the order of millimeters. The structure and morphology were researched by XRD, SEM, TEM, CEA, XPS, FTIR, and TG measurements. The theoretical FTIR spectra are calculated to compare with experiment value. It is found that the NH2 edges in the nanobelts are precisely for the reason of rich nitrogen. The photoluminescence (PL) spectrum was carried out. Two peaks at 443 and 500 nm were observed in the spectrum. In addition, a possible growth mechanism is also inferred by principle of VLS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291, 2001 (1947)

    Google Scholar 

  2. X.D. Wang, J.H. Song, Z.L. Wang, J. Mater. Chem. 17, 711 (2007)

    Article  Google Scholar 

  3. M.H. Zhao, Z.L. Wang, S.X. Mao, Nano Lett. 4, 587 (2004)

    Article  ADS  Google Scholar 

  4. S.X. Mao, M.H. Zhao, Z.L. Wang, Appl. Phys. Lett. 83, 993 (2003)

    Article  ADS  Google Scholar 

  5. M.L. Cohen, Phys. Rev. B 32, 7988 (1985)

    Article  ADS  Google Scholar 

  6. A.Y. Liu, M.L. Cohen, Science 245, 841 (1989)

    Article  ADS  Google Scholar 

  7. M.L. Cohen, Science 261, 307 (1993)

    Article  ADS  Google Scholar 

  8. M.H.V. Huynh, M.A. Hiskey, J.G. Archuleta, E.L. Roemer, Angew. Chem., Int. Ed. 44, 737 (2005)

    Article  Google Scholar 

  9. M. Terrones, P. Redlich, N. Grobert, S. Trasobares, W.-K. Hsu, H. Terrones, Adv. Mater. 11, 655 (1999)

    Article  Google Scholar 

  10. M. Nath, B.C. Satishkumar, A. Govindaraj, C.P. Vinod, C.N.R. Rao, Chem. Phys. Lett. 322, 333 (2000)

    Article  ADS  Google Scholar 

  11. X.B. Wang, Y.Q. Liu, D.B. Zhu, J. Phys. Chem. B 106, 2186 (2002)

    Article  Google Scholar 

  12. Q.X. Guo, Y. Xie, X. Wang, S. Zhang, T. Hou, S. Lv, Chem. Commun. 1, 26 (2004)

    Article  Google Scholar 

  13. C.B. Cao, F.L. Huang, C.T. Cao, J. Li, H.S. Zhu, Chem. Mater. 16, 5213 (2004)

    Article  Google Scholar 

  14. X.F. Xu, N. Xu, W. Hu, J.D. Wu, Y.Q. Shen, Z.F. Ying, Appl. Phys. A 96(2), 415 (2009)

    Article  ADS  Google Scholar 

  15. Y. Miyamoto, M.L. Cohen, S.G. Louie, Solid State Commun. 102, 605 (1997)

    Article  ADS  Google Scholar 

  16. J. Li, C.B. Cao, J.W. Hao, H.L. Qiu, Y.J. Xu, H.S. Zhu, Diam. Relat. Mater. 15, 1593 (2006)

    Article  ADS  Google Scholar 

  17. J.L. Zimmerman, R. Williams, V.N. Khabashesku, J.L. Margrave, Nano Lett. 1, 731 (2001)

    Article  ADS  Google Scholar 

  18. J. Li, C.B. Cao, H.S. Zhu, Nanotechnology 18, 115605 (2007)

    Article  ADS  Google Scholar 

  19. Y.C. Zhao, Z. Liu, W.G. Chu, L. Song, Z.X. Zhang, D.L. Yu, Y.J. Tian, S.S. Xie, L.F. Sun, Adv. Mater. 20, 1777 (2008)

    Article  Google Scholar 

  20. M. Terrones, P. Redlich, N. Grobert, S. Trasobares, W.-K. Hsu, H. Terrones, Y.Q. Zhu, J.P. Hare, A.K. Cheetham, M. Ruhle, H.W. Kroto, D.R.M. Walton, Adv. Mater. 11, 655 (1999)

    Article  Google Scholar 

  21. K. Suenaga, M. Yudasaka, C. Colliex, S. Iijima, Chem. Phys. Lett. 316, 365 (2000)

    Article  ADS  Google Scholar 

  22. J.V. Badding, D.C. Nesting, Chem. Mater. 8, 535 (1996)

    Article  Google Scholar 

  23. X.F. Li, J. Zhang, L.H. Shen, Y.M. Ma, W.W. Lei, Q.L. Cui, G.T. Zou, Appl. Phys. A, Mater. Sci. Process. 94, 387 (2009)

    Article  ADS  Google Scholar 

  24. M. Groenewolt, M. Antonietti, Adv. Mater. 17, 1789 (2005)

    Article  Google Scholar 

  25. Q. Guo, Q. Yang, C. Yi, L. Zhu, Y. Xie, Carbon 43, 1386 (2005)

    Article  Google Scholar 

  26. J. Ortega, O.F. Sankey, Phys. Rev. B 51, 2624 (1995)

    Article  ADS  Google Scholar 

  27. Y. Miyamoto, M.L. Cohen, S.G. Louie, Solid State Commun. 102, 605 (1997)

    Article  ADS  Google Scholar 

  28. J.E. Lowther, Phys. Rev. B 59, 11683 (1999)

    Article  ADS  Google Scholar 

  29. Q.X. Guo, Y. Xie, X.J. Wang, S.C. Li, T. Hou, X.M. Liu, Chem. Phys. Lett. 380, 84 (2003)

    Article  ADS  Google Scholar 

  30. F. Demichelis, Y.C. Liu, X.F. Rong, S. Schreiter, A. Tagliaferro, Solid State Commun. 95, 4754 (1995)

    Article  Google Scholar 

  31. S. Liu, S. Gangopadhyay, G. Sreenivas, S.S. Ang, H.A. Naseem, J. Appl. Phys. 82, 4508 (1997)

    Article  ADS  Google Scholar 

  32. Q. Wu, Z. Hu, X. Wang, S. Deng, K. Huo, Y. Lu, R. Zhang, J. Mater. Chem. 13, 2024 (2003)

    Article  Google Scholar 

  33. Q. Zhao, H. Zhang, X. Xu, Z. Wang, J. Xu, D. Yu, Appl. Phys. Lett. 86, 203115 (2005)

    Article  ADS  Google Scholar 

  34. C. Liu, Z. Hu, Q. Wu, X. Wang, Y. Chen, H. Sang, J. Zhu, S.N. Xu, J. Am. Chem. Soc. 127, 1318 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghai Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Wu, X., Li, X. et al. Synthesis and characterization of nitrogen-rich carbon nitride nanobelts by pyrolysis of melamine. Appl. Phys. A 105, 161–166 (2011). https://doi.org/10.1007/s00339-011-6471-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6471-4

Keywords

Navigation