Skip to main content
Log in

Optical–thermal simulation applied to the study of the pattern effects induced by the sub-melt laser anneal process in advanced CMOS technologies

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present a study of the temperature non-homogeneities induced by millisecond laser annealing in advanced CMOS technologies at die level. Because of the design, the device layout at the wafer surface introduces during this anneal significant spatial variations of optical absorption and heat transfer that can induce temperature non-uniformities over the die, often called ‘pattern effects’. These temperature variations are becoming a major issue, since they are the origin of significant device properties dispersion. A complete optical and thermal simulation set has been developed to estimate the temperature variations induced by the topologies at the wafer surface during the laser anneal process. The modelling has been validated by either a comparison with another software or reflectometry and electrical measurements on real structures. This work demonstrates that the temperature variations are caused either by optical coupling or by thermal properties dispersion present at the wafer surface at the anneal step. Finally, we demonstrate that the impact of the thin-film interferences and diffraction phenomena is the critical issue for these pattern effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Pouydebasque, B. Dumont, S. Denorme, F. Wacquant, M. Bidaud, C. Laviron, A. Halimaoui, C. Chaton, J.D. Chapon, P. Gouraud, F. Leverd, H. Bernard, S. Warrick, D. Delille, K. Romanjek, R. Gwoziecki, N. Planes, S. Vadot, I. Pouilloux, F. Arnaud, F. Boeuf, T. Skotnicki, in Tech. Dig. Int. Electron Devices Meet (2005), p. 663

    Google Scholar 

  2. M. Bidaud, H. Bono, C. Chaton, B. Dumont, V. Huard, P. Morin, L. Proencamota, R. Ranica, G. Ribes, in Proc. 15th IEEE Int. Conf. Advanced Thermal Processing of Semiconductors (2007), p. 251

    Chapter  Google Scholar 

  3. T. Yamamoto, T. Kubo, T. Sugekawa, L. Feng, Y. Wang, M. Kase, J. Electrochem. Soc. 153, 598 (2006)

    Article  Google Scholar 

  4. T. Feudel, M. Horstmann, L. Herrmann, M. Herden, M. Gerhardt, D. Greenlaw, P. Fisher, J. Kluth, in Proc. 14th IEEE Int. Conf. Advanced Thermal Processing of Semiconductors (2006), p. 73

    Chapter  Google Scholar 

  5. A. Colin, P. Morin, F. Cacho, H. Bono, R. Beneyton, M. Bidaud, D. Mathiot, E. Fogarassy, Mater. Sci. Eng. B 154–155, 31 (2008)

    Article  Google Scholar 

  6. T. Hoffmann, T. Noda, S. Felch, S. Severi, V. Parihar, H. Forstner, C. Vrancken, M. de Potter, B. van Daele, H. Bender, M. Niwal, R. Schreutelkamp, W. Vandervorst, S. Biesemans, P.P. Absil, in Ext. Abstr. 7th Int. Workshop Junction Technology (2007), p. 137

    Google Scholar 

  7. F. Cacho, H. Bono, R. Beneyton, B. Dumont, A. Colin, P. Morin, J. Appl. Phys. 108, 014902 (2010)

    Article  ADS  Google Scholar 

  8. B.J. Lee, Z.M. Zhang, in Proc. 13th IEEE Int. Conf. Advanced Thermal Processing of Semiconductors (2005), p. 275

    Chapter  Google Scholar 

  9. H.R. Philipp, E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985)

    Google Scholar 

  10. K. Ota, K. Sugihara, H. Sayama, T. Uchida, H. Oda, T. Eimori, H. Morimoto, Y. Inoue, in Tech. Dig. Int. Electron Devices Meet (2002), p. 27

    Google Scholar 

  11. P. Morin, F. Cacho, R. Beneyton, B. Dumont, A. Colin, H. Bono, A. Villaret, E. Josse, R. Bianchini, Solid-State Electron. 54, 897 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Morin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colin, A., Morin, P., Cacho, F. et al. Optical–thermal simulation applied to the study of the pattern effects induced by the sub-melt laser anneal process in advanced CMOS technologies. Appl. Phys. A 104, 517–527 (2011). https://doi.org/10.1007/s00339-011-6467-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6467-0

Keywords

Navigation