Skip to main content

Films of brookite TiO2 nanorods/nanoparticles deposited by matrix-assisted pulsed laser evaporation as NO2 gas-sensing layers

Abstract

Titanium dioxide (TiO2) nanorods in the brookite phase, with average dimensions of 3–4 nm × 20–50 nm, were synthesized by a wet-chemical aminolysis route and used as precursors for thin films that were deposited by the matrix-assisted pulsed laser evaporation (MAPLE) technique. A nanorod solution in toluene (0.016 wt% TiO2) was frozen at the liquid-nitrogen temperature and irradiated with a KrF excimer laser at a fluence of 350 mJ/cm2 and repetition rate of 10 Hz. Single-crystal Si wafers, silica slides, carbon-coated Cu grids and alumina interdigitated slabs were used as substrates to allow performing different characterizations. Films fabricated with 6000 laser pulses had an average thickness of ∼150 nm, and a complete coverage of the selected substrate as achieved. High-resolution scanning and transmission electron microscopy investigations evidenced the formation of quite rough films incorporating individually distinguishable TiO2 nanorods and crystalline spherical nanoparticles with an average diameter of ∼13 nm. Spectrophotometric analysis showed high transparency through the UV-Vis spectral range. Promising resistive sensing responses to 1 ppm of NO2 mixed in dry air were obtained.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M.I. Baraton, L. Marhari, J. Nanopart. Res. 6, 107 (2004)

    Article  Google Scholar 

  2. 2.

    A. Vaseahsta, M. Vaclavikova, S.V. Gallios, P. Roy, O.P. Ummakarnchana, Sci. Technol. Adv. Mater. 8, 47 (2007)

    Article  Google Scholar 

  3. 3.

    A. Fainberg, Science 255, 1531 (1992)

    ADS  Article  Google Scholar 

  4. 4.

    L.M. Dorozhkin, V.A. Nefedov, A.G. Sabelnikov, V.G. Sevastjanov, Sens. Actuators B 99, 568 (2004)

    Article  Google Scholar 

  5. 5.

    J. Bardeen, W.H. Brattain, Bell Syst. Tech. J. 32, 1 (1953)

    Google Scholar 

  6. 6.

    T. Seiyama, A. Kato, K. Fujishi, M. Nagatani, Anal. Chem. 34, 1502 (1962)

    Article  Google Scholar 

  7. 7.

    T.P. Heusler, A. Lorke, P. Ifeacho, H. Wiggers, C. Schulz, J. Appl. Phys. 102, 124305 (2007)

    ADS  Article  Google Scholar 

  8. 8.

    A. Gurlo, N. Barsan, M. Ivanovskays, U. Weimar, W. Goepel, Sens. Actuators B, Chem. 47, 92 (1998)

    Article  Google Scholar 

  9. 9.

    L.J. LeGore, R.J. Lad, S.C. Moulzolf, J.F. Vetelino, B.G. Frederick, E.A. Kenik, Thin Solid Films 406, 79 (2002)

    ADS  Article  Google Scholar 

  10. 10.

    X. Chu, D. Jiag, Y. Guo, Z.Ch. Zheng, Sens. Actuators 120, 177 (2006)

    Article  Google Scholar 

  11. 11.

    M.S. Lin, H.J. Leu, Electroanalysis 17, 2068 (2005)

    Article  Google Scholar 

  12. 12.

    A. Rothschild, F. Edelman, Y. Komem, F. Cosandey, Sensors & Actuators B 67, 282 (2000)

    Article  Google Scholar 

  13. 13.

    J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan, Nano Lett. 3, 929 (2003)

    ADS  Article  Google Scholar 

  14. 14.

    H.Y. Jeong, D.-S. Lee, H.K. Choi, D.H. Lee, J.-E. Kim, J.Y. Lee, W.J. Lee, S.O. Kim, S.-Y. Choi, Appl. Phys. Lett. 96, 213105 (2010)

    ADS  Article  Google Scholar 

  15. 15.

    P.G. Su, C.-T. Lee, C.Y. Chou, K.-H. Cheng, Y.S. Chung, Sensors & Actuators B 139, 488 (2009)

    Article  Google Scholar 

  16. 16.

    D.B. Chrisey, A. Piquè, R.A. McGill, J.S. Horwitz, B.R. Ringeisen, Chem. Rev. 103, 553 (2003)

    Article  Google Scholar 

  17. 17.

    R. Rella, J. Spadavecchia, M.G. Manera, S. Capone, A. Taurino, M. Martino, A.P. Caricato, T. Tunno, Sensors & Actuators B 127, 426 (2007)

    Article  Google Scholar 

  18. 18.

    A.P. Caricato, M. Epifani, M. Martino, F. Romano, R. Rella, A. Taurino, T. Tunno, D. Valerini, J. Phys. D, Appl. Phys. 42, 095105 (2009)

    ADS  Article  Google Scholar 

  19. 19.

    S. Acquaviva, M. Fernández, G. Leggieri, A. Luches, M. Martino, A. Perrone, Appl. Phys. A 69, S471 (1999)

    ADS  Article  Google Scholar 

  20. 20.

    R. Buonsanti, V. Grillo, E. Carlino, C. Giannini, T. Kipp, R. Cingolani, P.D. Cozzoli, J. Am. Chem. Soc. 130, 11223 (2008)

    Article  Google Scholar 

  21. 21.

    S. S Mao, X. Chen, Chem. Rev. 107, 2891 (2007)

    Article  Google Scholar 

  22. 22.

    S.L. Isley, R.L. Penn, J. Phys. Chem. B 110, 15134 (2006)

    Article  Google Scholar 

  23. 23.

    X.Q. Gong, A. Selloni, Phys. Rev. B 76, 235307 (2007)

    ADS  Article  Google Scholar 

  24. 24.

    M.W. Cross, W.J. Varhue, Nanotechnology 19, 435705 (2008)

    ADS  Article  Google Scholar 

  25. 25.

    X. Su, Z. Zhang, M. Zhu, Appl. Phys. Lett. 88, 061913 (2006)

    ADS  Article  Google Scholar 

  26. 26.

    T. Karabacak, J.S. DeLuca, P.-I. Wang, J. Appl. Phys. 99, 064304 (2006)

    ADS  Article  Google Scholar 

  27. 27.

    Y. Wang, C. Dellago, J. Phys. Chem. B 107, 9214 (2003)

    Article  Google Scholar 

  28. 28.

    S. Link, C. Burda, B. Nikoobakht, M.A. El-Sayed, J. Phys. Chem. B 104, 6152 (2004)

    Article  Google Scholar 

  29. 29.

    H. Zhang, J.F. Banfield, J. Phys. Chem. B l04, 3481 (2000)

    Article  Google Scholar 

  30. 30.

    P.K. Naicker, P.T. Cummings, H. Zhang, J.F. Banfield, J. Phys. Chem. B 109, 15243 (2005)

    Article  Google Scholar 

  31. 31.

    J.-G. Li, T. Ishigaki, Acta Mater. 52, 5143 (2008)

    Article  Google Scholar 

  32. 32.

    M. Koelsch, S. Cassaignon, J.F. Guillemoles, J.P. Jolivet, Thin Solid Films 403, 312 (2002)

    ADS  Article  Google Scholar 

  33. 33.

    S.-D. Mo, W.Y. Ching, Phys. Rev. B 51, 13023 (1995)

    ADS  Article  Google Scholar 

  34. 34.

    J. Zhang, X. Xiao, J. Nan, J. Hazard. Mater. 176, 617 (2010)

    Article  Google Scholar 

  35. 35.

    R. Zallen, M.P. Moret, Solid State Commun. 137, 154–157 (2006)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. P. Caricato.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Caricato, A.P., Buonsanti, R., Catalano, M. et al. Films of brookite TiO2 nanorods/nanoparticles deposited by matrix-assisted pulsed laser evaporation as NO2 gas-sensing layers. Appl. Phys. A 104, 963–968 (2011). https://doi.org/10.1007/s00339-011-6462-5

Download citation

Keywords

  • Rutile
  • Select Area Electron Diffraction Pattern
  • PETN
  • Brookite
  • Brookite Phase