Abstract
The growth of a room-temperature sputter-deposited thin Au film on two soft polymeric substrates, polystyrene (PS) and poly(methyl methacrylate) (PMMA), from nucleation to formation of a continuous film is investigated by means of atomic force microscopy. In particular, we studied the surface morphology evolution of the film as a function of the deposition time observing an initial Au three-dimensional island-type growth. Then the Au film morphology evolves, with increasing deposition time, from hemispherical islands to partially coalesced worm-like island structures, to percolation, and finally to a continuous and rough film. The overall Au morphology evolution is discussed in the framework of the interrupted coalescence model, allowing us to evaluate the island critical radius for the partial coalescence R c=8.7±0.9 nm for Au on PS and R c=7.6±0.8 nm for Au on PMMA. Furthermore, the application of the kinetic freezing model allows us to evaluate the room-temperature surface diffusion coefficient D s≈1.8×10−18 m2/s for Au on PS and D s≈1.1×10−18 m2/s for Au on PMMA. The application of the Vincent model allows us, also, to evaluate the critical coverage (at which the percolation occurs) P c=61% for Au on PS and P c=56% for Au on PMMA. Finally, the dynamic scaling theory of a growing interface was applied to characterize the kinetic roughening of the Au film on both PMMA and PS. Such analyses allow us to evaluate the dynamic scaling, growth, and roughness exponents z=3.8±0.4, β=0.28±0.03, α=1.06±0.05 for the growth of Au on PS and z=4.3±0.3, β=0.23±0.03, α=1.03±0.05 for the growth of Au on PMMA, in agreement with a non-equilibrium but conservative and linear growth process in which the surface diffusion phenomenon plays a key role.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
P. Moriarty, Rep. Prog. Phys. 64, 297 (2001)
M. Ohring, The Materials Science of Thin Films (Academic Press, New York, 1992)
D.L. Smith, Thin Film Deposition (McGraw-Hill, New York, 1995)
W.G. Schmidt, F. Bechstedt, G.P. Srivastava, Surf. Sci. Rep. 25, 141 (1996)
C.T. Campbell, Surf. Sci. Rep. 27, 1 (1997)
M. Zinke-Allmang, L.C. Feldman, M.H. Grabov, Surf. Sci. Rep. 16, 377 (1992)
G. Kaune, M.A. Ruderer, E. Metwalli, W. Wang, S. Couet, K. Schlage, R. Röhlsberger, S.V. Roth, P. Müller-Buschbaum, Appl. Mater. Interfaces 1, 353 (2009)
M. Muccini, Nat. Mater. 5, 605 (2006)
U. Mitschke, P. Bäuerle, J. Mater. Chem. 10, 1471 (2000)
H. Hoppe, N.S. Sariciftci, J. Mater. Res. 19, 1924 (2004)
M.S. Kunz, K.R. Shull, A.J. Kellock, J. Appl. Phys. 72, 4458 (1992)
Z. Liu, K. Pappacena, J. Cerise, J. Kim, C.J. Durning, B. O’Shaughnessy, R. Levicky, Nano Lett. 2, 219 (2002)
R.L.W. Smithson, D.J. McClure, D.F. Evans, Thin Solid Films 307, 110 (1997)
R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy (Cambridge University Press, Cambridge, 1994)
D. Sarid, Scanning Force Microscopy with Applications to Electric, Magnetic and Atomic Forces (Oxford University Press, Oxford, 1994)
A.-L. Barabasi, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995)
F. Family, T. Vicsek, Dynamics of Fractal Surfaces (World Scientific, Singapore, 1991)
X. Yu, P.M. Duxbury, G. Jeffers, M.A. Dubson, Phys. Rev. B 44, 13163 (1991)
G. Jeffers, M.A. Dubson, P.M. Duxbury, J. Appl. Phys. 75, 5016 (1994)
R. Vincent, Proc. R. Soc. Lond. A 321, 53 (1971)
M. Fanfoni, M. Tomellini, M. Volpe, Phys. Rev. B 64, 075409 (2001)
D.S. Fryer, R.D. Peters, E.J. Kim, J.E. Tomaszewski, J.J. de Pablo, P.F. Nealey, Macromolecules 34, 5627 (2001)
D.Y. Sharma, K. Hanumantha Rao, Adv. Colloid Interface Sci. 98, 341 (2002)
C.G. Granqvist, R.A. Buhrman, J. Appl. Phys. 47, 2200 (1976)
K.R. Heim, S.T. Coyle, G.G. Hembree, J.A. Venables, M.R. Scheinfein, J. Appl. Phys. 80, 1161 (1996)
L. Zhang, F. Cosandey, R. Persaud, T.E. Madey, Surf. Sci. 439, 73 (1999)
F. Ruffino, M.G. Grimaldi, J. Appl. Phys. 107, 074301 (2010)
J.A. Venables, G.D. Spiller, M. Hanbücken, Rep. Prog. Phys. 47, 399 (1984)
I.S. Grigoryev, E.Z. Meilikhov, A.A. Radzig (eds.), Handbook of Physical Quantities (CRC, Boca Raton, 1996)
H. Göbel, P. von Blanckenhagen, Surf. Sci. 331–333, 885 (1995)
F. Ruffino, V. Torrisi, G. Marletta, M.G. Grimaldi, Nanoscale Res. Lett. 6, 112 (2011)
F. Family, T. Vicsek, J. Phys. A 18, L75 (1985)
J. Villain, J. Phys. I 1, 19 (1991)
D.E. Wolf, J. Villain, Europhys. Lett. 13, 389 (1990)
Z.-W. Lai, S. Das Sarma, Phys. Rev. Lett. 66, 2348 (1991)
L.-H. Tang, T. Nattermann, Phys. Rev. Lett. 66, 2899 (1991)
M. Kardar, G. Parisi, Y.-C. Zhang, Phys. Rev. Lett. 56, 889 (1986)
J.M. Kim, J.M. Kosterlitz, Phys. Rev. Lett. 62, 2289 (1989)
B.M. Forrest, L.-H. Tang, Phys. Rev. Lett. 64, 1405 (1990)
J. Chevrier, V. Le Thanh, R. Buys, J. Derrien, Europhys. Lett. 16, 737 (1991)
G. Palasantzas, J. Krim, Phys. Rev. Lett. 73, 3564 (1994)
E. Placidi, M. Fanfoni, F. Arciprete, F. Patella, N. Motta, A. Balzarotti, Mater. Sci. Eng. B 69–70, 243 (2000)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ruffino, F., Torrisi, V., Marletta, G. et al. Growth morphology of nanoscale sputter-deposited Au films on amorphous soft polymeric substrates. Appl. Phys. A 103, 939–949 (2011). https://doi.org/10.1007/s00339-011-6413-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00339-011-6413-1