Skip to main content
Log in

Growth mechanism of carbon nanotubes produced by pyrolysis of a composite film of poly (vinyl alcohol) and fly ash

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We produced carbon nanotubes (CNTs) by pyrolysis of a composite film of poly (vinyl alcohol) (PVA) with fly ash (FA) at 500°C for 10 min under nitrogen. The composite films were prepared by a suspension of PVA and FA in deionized water and cast onto glass petri dishes. The morphologies of the CNTs were observed in the images of scanning and transmission electron microscopy, showing different types of structures, e.g. whiskers, branches, ropes and graphene sheets. The widths of the CNTs measured varied in the range 18–80 nm. X-ray photoelectron spectroscopy analysis showed five types of carbon binding peaks, C–C/C–H (∼77%), C–O–H (∼9%), –C–O–C (∼5%), C=O (∼5%) and –O–C=O (∼3%). From an image of a broken CNT, a mechanism was proposed for the formation of CNTs. The CNTs grown on FA surfaces have potential for the fabrication of high-strength composite materials with polymer and metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.R. Schlittler, J.W. Seo, J.K. Gimzewski, C. Durkan, M.S.M. Saifullah, M.E. Welland, Science 292, 1136 (2001)

    Article  ADS  Google Scholar 

  2. B. Wei, R. Vajtai, Y.Y. Choi, P.M. Ajayan, Nano Lett. 2(10), 1105 (2002)

    Article  ADS  Google Scholar 

  3. M. Benito, Y. Maniette, Y. Aniette, E. Mogoza, T.M. Martnez, Carbon 36(5–6), 681 (1998)

    Article  Google Scholar 

  4. O.P. Krivoruchko, N.I. Maksimova, V.I. Zaikovskii, A.N. Salanov, Carbon 38, 1075 (2000)

    Article  Google Scholar 

  5. S. Wang, Environ. Sci. Technol. 42(19), 7055 (2008)

    Article  ADS  Google Scholar 

  6. D.C.D. Nath, S. Bandyopadhyay, P. Boughton, A. Yu, D. Blackburn, C. White, J. Appl. Polym. Sci. 117, 114 (2010)

    Google Scholar 

  7. D.C.D. Nath, S. Bandyopadhyay, A. Yu, Q. Zeng, T. Das, D. Blackburn, J. Mater. Sci. 44, 6078 (2009)

    Article  ADS  Google Scholar 

  8. J.P. Gorninski, D.C.D. Molin, C.S. Kazmierczak, Cem. Concr. Res. 34, 2091 (2004)

    Article  Google Scholar 

  9. P.K. Rohatgi, N. Gupta, S. Alaraj, J. Compos. Mater. 40(13), 1163 (2006)

    Article  Google Scholar 

  10. O.M. Dunens, K.J. Mackenzie, A.T. Harris, Environ. Sci. Technol. 43, 7889 (2009)

    Article  Google Scholar 

  11. A. Gorbunova, O. Josta, W. Pompea, A. Graff, Carbon 40, 113 (2002)

    Article  Google Scholar 

  12. A.A. Didik, V.I. Kodolov, A.Y. Volkov, E.G. Volkova, K.H. Hallmeier, Int. J. Inorg. Mater. 39(6), 583 (2003)

    Google Scholar 

  13. S. Amelinckx, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Ivanov, J.B. Nagy, Science 265, 635 (1994)

    Article  ADS  Google Scholar 

  14. S. Gupta, M. Dubikova, D. French, V. Sahajwalla, Energy Fuels 21, 1052 (2007)

    Article  Google Scholar 

  15. N.G. Chopra, F.M. Ross, A. Zett, Chem. Phys. Lett. 256(3), 241 (1996)

    Article  ADS  Google Scholar 

  16. J. Kastner, T. Pichler, H. Kuzmany, S. Curran, W. Blau, D.N. Weldon, M. Delamesiere, S. Draper, H. Zandbergen, Chem. Phys. Lett. 221, 53 (1994)

    Article  ADS  Google Scholar 

  17. Y. Ando, X. Zhao, H. Shimoyama, Carbon 39, 569 (2001)

    Article  Google Scholar 

  18. H. Li, A. Misra, Z. Horita, C.C. Koch, N. Mara, P.O. Dickerson, Y. Zhu, Appl. Phys. Lett. 95, 071907 (2009)

    Article  ADS  Google Scholar 

  19. C.E. Morelli, J. Yang, E. Couteau, K. Hernadi, J.W. Seo, C. Bonjour, Phys. Status Solidi 201(8), R53 (2004)

    Article  Google Scholar 

  20. J. Sun, L. Gao, W. Li, Chem. Mater. 14, 5169 (2002)

    Article  Google Scholar 

  21. D.C.D. Nath, S. Bandyopadhyay, A. Yu, D. Blackburn, C. White, J. Appl. Polym. Sci. 115, 1510 (2010)

    Article  Google Scholar 

  22. A.R. Bhattacharyya, T.V. Sreekumara, T. Liu, S. Kumara, L.M. Ericson, R.H. Hauge, Polymer 44, 2373 (2003)

    Article  Google Scholar 

  23. Y. Lin, B. Zhou, K.A. S Fernando, P. Liu, L.F. Allard, Y.P. Sun, Macromolecules 36, 7199 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilip C. D. Nath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nath, D.C.D., Sahajwalla, V. Growth mechanism of carbon nanotubes produced by pyrolysis of a composite film of poly (vinyl alcohol) and fly ash. Appl. Phys. A 104, 539–544 (2011). https://doi.org/10.1007/s00339-011-6405-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6405-1

Keywords

Navigation