Skip to main content

Geometry-controlled adhesion: revisiting the contact splitting hypothesis

Abstract

Following studies of biological attachment systems, the principle of contact splitting, according to which splitting up the contact into finer subcontacts increases adhesion, was introduced. However, numerous attempts at employing this principle in producing dry adhesives were unsuccessful, prompting us to test its validity. Here, we show that in addition to the increase in number of subcontacts, the contact splitting model also implies a built-in increase in contact area. Thus, based on this model, it is impossible to say which parameter leads to increase in adhesion, the increasing number of subcontacts, as accepted to think, or just an increase in contact area, which is a trivial result. To clarify this point, we show experimentally what happens if we keep the contact area constant, while increasing the number of subcontacts in the “equal load sharing” mode, which was never done before. In contrast to the contact splitting principle, our measurements clearly demonstrate that, in flat-punch-patterned conformal contact, the pull-off force remains the same even when the number of subcontacts increases by two orders of magnitude. Our finding suggests that the contact splitting idea can only work in thin-film-based contacts, which are indeed employed in most biological temporary attachment systems.

This is a preview of subscription content, access via your institution.

References

  1. M. Scherge, S.N. Gorb, Biological Micro- and Nanotribology: Nature’s Solutions (Springer, Berlin, 2001)

    Google Scholar 

  2. N.E. Stork, J. Exp. Biol. 88, 91 (1980)

    Google Scholar 

  3. K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing, R.J. Full, Nature 405, 681 (2000)

    Article  ADS  Google Scholar 

  4. K. Autumn, M. Sitti, Y.A. Liang, A.M. Peattie, W.R. Hansen, S. Sponberg, T.W. Kenny, R. Fearing, J.N. Israelachvili, R.J. Full, Proc. Natl. Acad. Sci. USA 99, 12252 (2002)

    Article  ADS  Google Scholar 

  5. G. Huber, H. Mantz, R. Spolenak, K. Mecke, K. Jacobs, S.N. Gorb, E. Arzt, Proc. Natl. Acad. Sci. USA 102, 16293 (2005)

    Article  ADS  Google Scholar 

  6. E. Arzt, S. Gorb, R. Spolenak, Proc. Natl. Acad. Sci. USA 100, 10603 (2003)

    Article  ADS  Google Scholar 

  7. E. Arzt, Mater. Sci. Eng., C, Biomim. Mater., Sens. Syst. 26, 1245 (2006)

    Article  Google Scholar 

  8. E.P. Chan, C. Greiner, E. Arzt, A.J. Crosby, Mater. Res. Soc. Bull. 32, 496 (2007)

    Article  Google Scholar 

  9. E. Kroner, E. Arzt, Vak. Forsch. Prax. 21, A14 (2009)

    Article  Google Scholar 

  10. M. Sitti, R.S. Fearing, J. Adhes. Sci. Technol. 17, 1055 (2003)

    Article  Google Scholar 

  11. N.J. Glassmaker, A. Jagota, C.-Y. Hui, J. Kim, J. R. Soc. Interface 1, 23 (2004)

    Article  Google Scholar 

  12. C.-Y. Hui, N.J. Glassmaker, T. Tang, A. Jagota, J. R. Soc. Interface 1, 35 (2004)

    Article  Google Scholar 

  13. A. Peressadko, S.N. Gorb, J. Adhes. 80, 247 (2004)

    Article  Google Scholar 

  14. B. Aksak, M.P. Murphy, M. Sitti, Langmuir 23, 3322 (2007)

    Article  Google Scholar 

  15. C. Greiner, A. del Campo, E. Arzt, Langmuir 23, 3495 (2007)

    Article  Google Scholar 

  16. A. del Campo, C. Greiner, E. Arzt, Langmuir 23, 10235 (2007)

    Article  Google Scholar 

  17. S. Kim, M. Sitti, Appl. Phys. Lett. 89, 261911 (2006)

    Article  ADS  Google Scholar 

  18. N.J. Glassmaker, A. Jagota, C.-Y. Hui, W.L. Noderer, M.K. Chaudhury, Proc. Natl. Acad. Sci. USA 104, 10786 (2007)

    Article  ADS  Google Scholar 

  19. S. Gorb, M. Varenberg, A. Peressadko, J. Tuma, J. R. Soc. Interface 4, 271 (2007)

    Article  Google Scholar 

  20. L. Qu, L. Dai, M. Stone, Z. Xia, Z.L. Wang, Science 322, 238 (2008)

    Article  ADS  Google Scholar 

  21. M.P. Murphy, B. Aksak, M. Sitti, Small 5, 170 (2009)

    Article  Google Scholar 

  22. C. Greiner, E. Arzt, A. del Campo, Adv. Mater. 21, 479 (2009)

    Article  Google Scholar 

  23. K.L. Johnson, K. Kendall, A.D. Roberts, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 324, 301 (1971)

    Article  ADS  Google Scholar 

  24. W.J.P. Barnes, Mater. Res. Soc. Bull. 32, 479 (2007)

    Article  Google Scholar 

  25. M. Varenberg, A. Peressadko, S. Gorb, E. Arzt, S. Mrotzek, Rev. Sci. Instrum. 77, 066105 (2006)

    Article  ADS  Google Scholar 

  26. M. Varenberg, A. Peressadko, S. Gorb, E. Arzt, Appl. Phys. Lett. 89, 121905 (2006)

    Article  ADS  Google Scholar 

  27. A.K. Geim, S.V. Dubonos, I.V. Grigorieva, K.S. Novoselov, A.A. Zhukov, Nat. Mater. 2, 461 (2003)

    Article  ADS  Google Scholar 

  28. M. Varenberg, S. Gorb, Adv. Mater. 21, 483 (2009)

    Article  Google Scholar 

  29. M. Varenberg, N.M. Pugno, S.N. Gorb, Soft Matter 6, 3269 (2010)

    Article  ADS  Google Scholar 

  30. K. Kendall, J. Phys. D, Appl. Phys. 8, 1449 (1975)

    Article  ADS  Google Scholar 

  31. W.R. Hansen, K. Autumn, Proc. Natl. Acad. Sci. USA 102, 385 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Varenberg or Stanislav N. Gorb.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Varenberg, M., Murarash, B., Kligerman, Y. et al. Geometry-controlled adhesion: revisiting the contact splitting hypothesis. Appl. Phys. A 103, 933–938 (2011). https://doi.org/10.1007/s00339-011-6394-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6394-0

Keywords

  • Contact Area
  • PDMS
  • Contact Stiffness
  • Contact Element
  • Real Contact Area