Advertisement

Applied Physics A

, Volume 104, Issue 4, pp 1129–1136 | Cite as

A mathematical model to predict the grain size of nanocrystalline CdS thin films based on the deposition condition used in the sol–gel spin coating method

  • M. ThambiduraiEmail author
  • N. Muthukumarasamy
  • N. Murugan
  • Dhayalan Velauthapillai
  • S. Agilan
  • R. Balasundaraprabhu
Article

Abstract

Design of experiment (DOE) based on central composite design (CCD) has been employed for the development of a mathematical model correlating the important process parameters like thiourea concentration (U), annealing temperature (A), rotational speed (S), and annealing time (T) of the spin coating process for the preparation of CdS thin films. The experiments were conducted as per the design matrix. Nanocrystalline CdS thin films have been prepared using cadmium nitrate and thiourea as precursors by sol gel spin coating method using the results of the mathematical model. The prepared CdS films have been characterized and the crystal structure and grain size of the samples were analyzed using X-ray diffraction technique. The adequacy of the developed models was checked by analysis of variance (ANOVA) technique. The accuracy of prediction has been carried out by conducting confirmation test. Using this model, the main effect of process parameters on grain size of CdS films have been studied. These parameters were optimized to obtain minimum grain size using the Microsoft excel solver. The results have been verified by depositing CdS films using the optimized conditions. These films have been characterized using X-ray diffraction technique and the grain size is found to be 8.8 nm. The high resolution transmission electron microscopy (HRTEM) analysis showed the grain size of the prepared CdS film to be ∼7 nm. UV–vis spectroscopy analysis revealed that CdS films exhibited quantum confinement effect.

Keywords

Thiourea Central Composite Design Spin Coating Process Thiourea Concentration Close Space Sublimation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.L. Liu, Y.S. Tang, K.L. Wang, T. Radetic, R. Gronsky, Appl. Phys. Lett. 74, 1863 (1999) ADSCrossRefGoogle Scholar
  2. 2.
    J.L. Liu, W.G. Wu, A. Balandin, G. Jin, K.L. Wang, Appl. Phys. Lett. 74, 185 (1999) ADSCrossRefGoogle Scholar
  3. 3.
    D. Pan, Y.P. Zeng, M.Y. Kong, J. Wu, Y.Q. Zhu, C.H. Zheng, J.M. Li, C.Y. Wang, Electron. Lett. 32, 1726 (1996) CrossRefGoogle Scholar
  4. 4.
    C.P. Poole Jr., F.J. Owens, Introduction of Nanotechnology (Wiley, New York, 2003) Google Scholar
  5. 5.
    K.R. Murali, S. Kumaresan, J. Joseph Prince, J. Mater. Sci., Mater. Electron. 18, 487 (2007) CrossRefGoogle Scholar
  6. 6.
    X.L. Tong, D.S. Jiang, W.B. Hu, Z.M. Liu, M.Z. Luo, Appl. Phys. A 84, 143 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    B. Pradhan, A.K. Sharma, A.K. Ray, J. Cryst. Growth 304, 388 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    P. Raji, C. Sanjeeviraja, K. Ramachandran, Bull. Mater. Sci. 28, 233 (2005) CrossRefGoogle Scholar
  9. 9.
    Y.A. Kalandaragh, M.B. Muradov, R.K. Mammedov, A. Kaodayari, J. Cryst. Growth 305, 175 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    D. Patidar, R. Sharma, N. Jani, T.P. Sharma, N.S. Saxena, Bull. Mater. Sci. 29, 21 (2006) CrossRefGoogle Scholar
  11. 11.
    M. Ur-rehman, A.K.S. Aqili, M. Shafique, Z. Ali, A. Maqsood, A. Kazmi, J. Mater. Sci. Lett. 22, 127 (2003) CrossRefGoogle Scholar
  12. 12.
    M. Takahashi, S. Hasegawa, M. Watanabe, T. Miyuki, S. Ikeda, K. Iida, J. Appl. Electrochem. 32, 359 (2002) CrossRefGoogle Scholar
  13. 13.
    T. Di Luccio, E. Piscopiello, A.M. Laera, M.V. Antisari, Mater. Sci. Eng., C, Biomim. Mater., Sens. Syst. 27, 1372 (2007) CrossRefGoogle Scholar
  14. 14.
    D.C. Montgomery, Introduction to Statistical Quality Control (Wiley, New York, 2001) Google Scholar
  15. 15.
    S.R. Schmidt, R.G. Launsby, Understanding Industrial Designed Experiments (Launsby Consulting, Colorado Springs, 1992) Google Scholar
  16. 16.
    G.E.P. Box, W.H. Hunter, J.S. Hunter, Statistics for Experiment (Wiley, New York, 1978) Google Scholar
  17. 17.
    O.L. Davies, The Design and Analysis of Industrial Experiments (Longman, New York, 1978) Google Scholar
  18. 18.
    K.S. Ramaiah, A.K. Bhatnagar, R.D. Pilkinton, A.E. Hill, R.D. Tomlinson, J. Mater. Sci., Mater. Electron. 11, 269 (2000) CrossRefGoogle Scholar
  19. 19.
    S.M. Reda, Acta Mater. 56, 259 (2008) CrossRefGoogle Scholar
  20. 20.
    N.N. Parvathy, G.M. Pajonk, A.V. Rao, J. Mater. Synth. Process. 7, 221 (1999) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • M. Thambidurai
    • 1
    Email author
  • N. Muthukumarasamy
    • 1
  • N. Murugan
    • 2
  • Dhayalan Velauthapillai
    • 3
  • S. Agilan
    • 1
  • R. Balasundaraprabhu
    • 4
  1. 1.Department of PhysicsCoimbatore Institute of TechnologyCoimbatoreIndia
  2. 2.Department of Mechanical EngineeringCoimbatore Institute of TechnologyCoimbatoreIndia
  3. 3.Department of EngineeringUniversity College of BergenBergenNorway
  4. 4.Department of PhysicsPSG College of TechnologyCoimbatoreIndia

Personalised recommendations