Skip to main content
Log in

Microemulsion-based synthesis of copper nanodisk superlattices

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanocrystal superlattices (NCSs) comprised of self-assembled copper nanodisks were successfully synthesized in quaternary W/O microemulsions containing Span 80–Tween 80, liquid paraffin and n-butanol. Morphologies, structure and thermal properties of the Cu nanocrystals were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectra, thermogravimetry (TG) and differential thermogravimetry (DTG). The reaction conditions which effect the growth of the Cu nanodisks were explored, and a mechanism for the formation of the Cu NCSs is proposed. XRD and TEM studies show that the as-synthesized Cu nanodisks exhibit a cubic crystal structure, and FT-IR and TG analysis show that the surfaces of the Cu nanodisks are covered with surfactants, which assist in the formation of the superlattice and prevent the oxidation of the Cu nanocrystals. Variation of the reaction parameters such as mass ratio of the surfactants and the presence of oleic acid is found to have a significant effect on the formation of the Cu nanodisks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Zhou, Z. Wu, Z. Zhang, W. Liu, Q. Xue, Tribol. Lett. 8, 213 (2000)

    Article  Google Scholar 

  2. J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Appl. Phys. Lett. 78, 718 (2001)

    Article  ADS  Google Scholar 

  3. C. Tojo, M.C. Blanco, F. Rivadulla, M.A. López-Quintela, Langmuir 13, 1970 (1997)

    Article  Google Scholar 

  4. J.X. Zhou, M.S. Zhang, J.M. Hong, J.L. Fang, Z. Yin, Appl. Phys. A 81, 177 (2005)

    Article  ADS  Google Scholar 

  5. M.P. Pileni, J. Exp. Nanosci. 1, 13 (2006)

    Article  Google Scholar 

  6. M. Li, H. Schnablegger, S. Mann, Nature 402, 393 (1999)

    Article  ADS  Google Scholar 

  7. S. Vaucher, M. Li, S. Mann, Angew. Chem., Int. Ed. 39, 1793 (2000)

    Article  Google Scholar 

  8. M. Dawber, N. Stucki, C. Lichtensteiger, S. Gariglio, P. Ghosez, J.M. Triscone, Adv. Mater. 19, 4153 (2007)

    Article  Google Scholar 

  9. C. Didiot, S. Pons, B. Kierren, Y. Fagot-Revurat, D. Malterre, Nat. Nanotechnol. 2, 617 (2007)

    Article  ADS  Google Scholar 

  10. J.H. Liao, K.J. Chen, L.N. Xu, C.W. Ge, J. Wang, L. Huang, N. Gu, Appl. Phys. A 76, 541 (2003)

    Article  ADS  Google Scholar 

  11. C.T. Black, C.B. Murray, R.L. Sandstrom, S. Sun, Science 290, 1131 (2000)

    Article  ADS  Google Scholar 

  12. C.P. Collier, R.J. Saykally, J.J. Shiang, S.E. Henrichs, J.R. Heath, Science 277, 1978 (1997)

    Article  Google Scholar 

  13. F. Gao, Q. Lu, D. Zhao, Nano Lett. 3, 85 (2003)

    Article  ADS  Google Scholar 

  14. N. Zheng, X. Bu, P. Feng, Angew. Chem., Int. Ed. 43, 4753 (2004)

    Article  Google Scholar 

  15. F. Dumestre, B. Chaudret, C. Amiens, P. Renaud, P. Fejes, Science 303, 821 (2004)

    Article  ADS  Google Scholar 

  16. H. Zeng, J. Li, J.P. Liu, Z.L. Wang, S. Sun, Nature 420, 395 (2002)

    Article  ADS  Google Scholar 

  17. F.X. Redl, K.S. Cho, C.B. Murray, S. O’Brien, Nature 423, 968 (2003)

    Article  ADS  Google Scholar 

  18. Z.P. Liu, J.B. Liang, D. Xu, J. Lu, Y.T. Qian, Chem. Commun. 2724 (2004)

  19. X.S. Du, Z.Z. Yu, A. Dasari, J. Ma, Y.Z. Meng, Y.W. Mai, Chem. Mater. 18, 5156 (2006)

    Article  Google Scholar 

  20. A.E. Saunders, A. Ghezelbash, D.M. Smilgies, M.B. Sigman Jr., Korgel, B.A., Nano Lett. 6, 2959 (2006)

    Article  ADS  Google Scholar 

  21. X. Li, H. Shen, J. Niu, S. Li, Y. Zhang, H. Wang, L.S. Li, J. Am. Chem. Soc. 132, 12778 (2010)

    Article  Google Scholar 

  22. S.A. Harfenist, Z.L. Wang, R.L. Whetten, I. Vezmar, M.M. Alvarez, Adv. Mater. 9, 817 (1997)

    Article  Google Scholar 

  23. Z.L. Wang, S.A. Harfenist, R.L. Whetten, J. Bentley, N.D. Evans, J. Phys. Chem. B 102, 3068 (1998)

    Article  Google Scholar 

  24. R.L. Whetten, J.T. Khoury, M.M. Alvarez, S. Murthy, I. Vezmar, Z.L. Wang, P.W. Stephens, C.L. Cleveland, W.D. Luedtke, U. Landman, Adv. Mater. 8, 428 (1996)

    Article  Google Scholar 

  25. M.P. Pileni, Nat. Mater. 2, 145 (2003)

    Article  ADS  Google Scholar 

  26. T.H. Larsen, M. Sigman, A. Ghezelbash, R.C. Doty, B.A. Korgel, J. Am. Chem. Soc. 125, 5638 (2003)

    Article  Google Scholar 

  27. M.B. Sigman, A. Ghezelbash, T. Hanrath, A.E. Saunders, F. Lee, B.A. Korgel, J. Am. Chem. Soc. 125, 16050 (2003)

    Article  Google Scholar 

  28. T. Zhang, J. Ge, Y. Hu, Y. Yin, Nano Lett. 7, 3203 (2007)

    Article  ADS  Google Scholar 

  29. Y.T. Tao, J. Am. Chem. Soc. 115, 4350 (1993)

    Article  Google Scholar 

  30. S.J. Ahn, D.H. Son, K. Kim, J. Mol. Struct. 324, 223 (1994)

    Article  ADS  Google Scholar 

  31. J. Yang, Y. Zhou, T. Okamoto, T. Bessho, S. Satake, R. Ichino, M. Okido, Chem. Lett. 35, 1190 (2006)

    Article  Google Scholar 

  32. Z. Zhuang, Q. Peng, B. Zhang, Y. Li, J. Am. Chem. Soc. 130, 10482 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, L., Zhao, Y., Guo, W. et al. Microemulsion-based synthesis of copper nanodisk superlattices. Appl. Phys. A 103, 983–988 (2011). https://doi.org/10.1007/s00339-011-6368-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6368-2

Keywords

Navigation