Skip to main content
Log in

Field emission of comb-like chromium disilicide nanowires prepared by an in situ chloride-generated route

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Large-area comb-like chromium disilicide (CrSi2) nanowire film has been successfully synthesized on silicon wafer through an in situ chloride-generated route. The sample possesses branch-like nanowires grown out perpendicularly and evenly from both sides of a stem-like microrod, forming 2-fold comb-like hierarchical nanoarchitectures. The formation mechanism of the sample could be understood by a secondary nucleation process occurring on the surface of the firstly formed CrSi2 microrod, followed by epitaxial growth of branch-like nanowires under conditions of proper temperature and sufficient vapor supply in the reaction system. The field-emission behavior of the sample shows a low turn-on field of 5.3–6.5 V/μm at anode-sample distances of 200–400 μm, and agrees well with the conventional Fowler–Nordheim theory. No obvious degradation was observed in a life stability experiment period for over 100 min. The relationship between the field enhancement factor and anode-sample distance follows a universal equation, developed within a two-region field-emission model. The convenient and low-cost preparation of the comb-like CrSi2 nanowires and their remarkable field-emission performance suggest that they can serve as good candidates for field-emission applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Temple, Mater. Sci. Eng. 24, 185 (1999)

    Article  Google Scholar 

  2. S. Itoh, M. Tanaka, T. Tonegawa, J. Vac. Sci. Technol. B 22, 1362 (2004)

    Article  Google Scholar 

  3. N.S. Xu, H.S. Ejaz, Mater. Sci. Eng. R 48, 47 (2005)

    Article  Google Scholar 

  4. W. Zhu, Vacuum Microelectronics (Wiley, New York, 2001)

    Book  Google Scholar 

  5. C.A. Spindt, J. Appl. Phys. 39, 3504 (1968)

    Article  ADS  Google Scholar 

  6. C.A. Spindt, J. Appl. Phys. 47, 5248 (1976)

    Article  ADS  Google Scholar 

  7. C.T. Sune, G.W. Jones, D. Vellenga, J. Vac. Sci. Technol. B 10, 2984 (1992)

    Article  Google Scholar 

  8. D. Temple, W.D. Palmer, L.N. Yadon, J.E. Mancusi, D. Vellenga, G.E. McGuire, J. Vac. Sci. Technol. A 16, 1980 (1998)

    Article  ADS  Google Scholar 

  9. W.A. de Heer, A. Chatelain, D. Ugarte, Science 270, 1179 (1995)

    Article  ADS  Google Scholar 

  10. A.G. Rinzler, J.H. Hafner, P. Nikolaev, D.T. Colbert, R.E. Smalley, L. Lou, S.G. Kim, D. Tomanek, Science 269, 1550 (1995)

    Article  ADS  Google Scholar 

  11. W.I. Milne, K.B.K. Teo, G.A.J. Amaratunga, P. Legagneux, L. Gangloff, J.P. Schnell, V. Semet, B. Thien, O. Groening, J. Mater. Chem. 14, 933 (2004)

    Article  Google Scholar 

  12. S.C. Lim, K. Lee, I.H. Lee, Y.H. Lee, Nano 2, 69 (2007)

    Article  Google Scholar 

  13. C. Liu, Z. Hu, Q. Wu, X.Z. Wang, Y. Chen, H. Sang, J.M. Zhu, S.Z. Deng, N.S. Xu, J. Am. Chem. Soc. 127, 1318 (2005)

    Article  Google Scholar 

  14. Q. Zhao, J. Xu, X.Y. Xu, Z. Wang, D.P. Yu, Appl. Phys. Lett. 85, 5331 (2004)

    Article  ADS  Google Scholar 

  15. Z. Chen, C.B. Cao, H.S. Zhu, J. Phys. Chem. C 111, 1895 (2007)

    Article  Google Scholar 

  16. Q. Wan, K. Yu, T.H. Wang, C.L. Lin, Appl. Phys. Lett. 83, 2253 (2003)

    Article  ADS  Google Scholar 

  17. Q.H. Li, Q. Wan, Y.J. Chen, T.H. Wang, H.B. Jia, D.P. Yu, Appl. Phys. Lett. 85, 636 (2004)

    Article  ADS  Google Scholar 

  18. K. Yu, Y. Zhang, R. Xu, S. Ouyang, D. Li, L. Luo, Z. Zhu, J. Ma, S. Xie, S. Han, H. Geng, Mater. Lett. 59, 1866 (2005)

    Article  Google Scholar 

  19. J. Zhou, L. Gong, S.Z. Deng, J. Chen, J.C. She, N.S. Xu, R. Yang, Z.L. Wang, Appl. Phys. Lett. 87, 223108 (2005)

    Article  ADS  Google Scholar 

  20. X. Fang, Y. Bando, U.K. Gautam, C. Ye, D. Golberg, J. Mater. Chem. 18, 509 (2008)

    Article  Google Scholar 

  21. L.F. Mattheiss, Phys. Rev. B 43, 12549 (1991)

    Article  ADS  Google Scholar 

  22. V. Bellani, G. Guizzetti, F. Marabelli, A. Piaggi, A. Borghesi, F. Nava, V.N. Antonov, O. Jepsen, O.K. Andersen, V.V. Nemoshkalenko, Phys. Rev. B 46, 9380 (1992)

    Article  ADS  Google Scholar 

  23. I. Nishida, J. Mater. Sci. 7, 1119 (1972)

    Article  ADS  Google Scholar 

  24. V.E. Borisenko, Semiconducting Silicides (Springer, Berlin, 2000)

    Book  Google Scholar 

  25. E.P. George, M. Yamaguchi, K.S. Kumar, C.T. Liu, Annu. Rev. Mater. Sci. 24, 409 (1994)

    Article  ADS  Google Scholar 

  26. B.P. Bewlay, H.A. Lipsitt, M.R. Jackson, K.M. Chang, Mater. Manuf. Process. 9, 89 (1994)

    Article  Google Scholar 

  27. I.J. Chung, A. Hariz, Smart Mater. Struct. 6, 633 (1997)

    Article  ADS  Google Scholar 

  28. J.M. Bonard, J.P. Salvetat, T. Stockli, L. Forro, A. Chatelain, Appl. Phys. A 69, 245 (1999)

    Article  ADS  Google Scholar 

  29. T. Minami, T. Miyata, T. Yamamoto, Surf. Coat. Technol. 108, 583 (1998)

    Article  Google Scholar 

  30. W. Czarczynski, B. Dobrzanski, Z. Znamirowski, J. Kozlowski, Vacuum 70, 299 (2003)

    Article  Google Scholar 

  31. M.T. Chang, C.Y. Chen, L.J. Chou, L.J. Chen, ACS Nano 3, 3776 (2009)

    Article  Google Scholar 

  32. K.Y. Seo, K.S. Varadwaj, D.Y. Cha, J.H. In, J.Y. Kim, J.G. Park, B.S. Kim, J. Phys. Chem. C 111, 9072 (2007)

    Article  Google Scholar 

  33. J.R. Szczech, A.L. Schmitt, M.J. Bierman, S. Jin, Chem. Mater. 19, 3238 (2007)

    Article  Google Scholar 

  34. L.S. Yu, Y.W. Ma, J.M. Zhu, H. Feng, Q. Wu, Y.N. Lu, W.W. Lin, H. Sang, Z. Hu, J. Phys. Chem. C 112, 5865 (2008)

    Article  Google Scholar 

  35. X. Xu, G.R. Brandes, Appl. Phys. Lett. 74, 2549 (1999)

    Article  ADS  Google Scholar 

  36. L.W. Yin, Y. Bando, Y.C. Zhu, M.S. Li, Y.B. Li, D. Golberg, Adv. Mater. 17, 110 (2005)

    Article  Google Scholar 

  37. L. Manna, D.J. Milliron, A. Meisel, E.C. Scher, A.P. Alivisatos, Nat. Mater. 2, 382 (2003)

    Article  ADS  Google Scholar 

  38. C. Ma, D. Moore, J. Li, Z.L. Wang, Adv. Mater. 15, 228 (2003)

    Article  Google Scholar 

  39. J.Q. Hu, Y. Bando, D. Golberg, Chem. Phys. Lett. 372, 758 (2003)

    Article  ADS  Google Scholar 

  40. E.G. Gillan, R.B. Kaner, Chem. Mater. 8, 333 (1996)

    Article  Google Scholar 

  41. L.N. Zelenina, Z.I. Semenova, V.A. Titov, T.P. Chusova, Russ. Chem. Bull. 53, 1621 (2004)

    Article  Google Scholar 

  42. V.A. Titov, E.E. Grinberg, Russ. J. Phys. Chem. 80, 689 (2006)

    Article  Google Scholar 

  43. Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y.D. Yin, F. Kim, Y.Q. Yan, Adv. Mater. 15, 353 (2003)

    Article  Google Scholar 

  44. A.P. Levitt, Whisker Technology (Wiley-Interscience, New York, 1970)

    Google Scholar 

  45. J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, J. Mater. Chem. 14, 770 (2004)

    Article  Google Scholar 

  46. Y.Q. Zhu, W.K. Hsu, W.Z. Zhou, M. Terrones, H.W. Kroto, D.R.M. Walton, Chem. Phys. Lett. 347, 337 (2001)

    Article  ADS  Google Scholar 

  47. S.H. Xie, W.Z. Zhou, Y.Q. Zhu, J. Phys. Chem. B 108, 11561 (2004)

    Article  Google Scholar 

  48. J.G. Yu, X.F. Zhao, S.W. Liu, M. Li, S. Mann, D.H.L. Ng, Appl. Phys. A 87, 113 (2007)

    Article  ADS  Google Scholar 

  49. J.Y. Lao, J.G. Wen, Z.F. Ren, Nano Lett. 2, 1287 (2002)

    Article  ADS  Google Scholar 

  50. H.W. Kim, N.H. Kim, J.H. Myung, S.H. Shim, Phys. Status Solidi A 202, 1758 (2005)

    Article  ADS  Google Scholar 

  51. X. Zhang, Y. Xie, F. Xu, X.B. Tian, J. Colloid Interface Sci. 274, 118 (2004)

    Article  Google Scholar 

  52. Y.H. Leung, A.B. Djurisvic, J. Gao, M.H. Xie, Z.F. Wei, S.J. Xu, W.K. Chan, Chem. Phys. Lett. 394, 452 (2004)

    Article  ADS  Google Scholar 

  53. J.M. Bonard, H. Kind, T. Stöckli, L.O. Nilsson, Solid-State Electron. 45, 893 (2001)

    Article  ADS  Google Scholar 

  54. W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jim, I.T. Han, Y.H. Lee, J.E. Jung, N.S. Lee, G.S. Park, J.M. Kim, Appl. Phys. Lett. 75, 3129 (1999)

    Article  ADS  Google Scholar 

  55. B. Xiang, Q.X. Wang, Z. Wang, X.Z. Zhang, L.Q. Liu, J. Xu, D.P. Yu, Appl. Phys. Lett. 86, 243103 (2005)

    Article  ADS  Google Scholar 

  56. C.M. Chang, Y.C. Chang, Y.A. Chung, C.Y. Lee, L.J. Chen, J. Phys. Chem. C 113, 17720 (2009)

    Article  Google Scholar 

  57. X.T. Zhou, N. Wang, F.C.K. Au, H.L. Lai, H.Y. Peng, I. Bello, C.S. Lee, S.T. Lee, Mater. Sci. Eng. A 286, 119 (2000)

    Article  Google Scholar 

  58. K.F. Huo, Y.M. Hu, Y.W. Ma, Y.N. Lü, Z. Hu, Y. Chen, Nanotechnology 18, 145615 (2007)

    Article  ADS  Google Scholar 

  59. Y.M. Hu, K.F. Huo, Y.W. Ma, Y.N. Lü, J.Q. Xu, Z. Hu, Y. Chen, J. Nanosci. Nanotechnol. 7, 2922 (2007)

    Article  Google Scholar 

  60. R.H. Fowler, L.W. Nordheim, Proc. R. Soc. Lond. Ser. A 119, 173 (1928)

    Article  ADS  MATH  Google Scholar 

  61. L.W. Nordheim, Proc. R. Soc. Lond. Ser. A 121, 626 (1928)

    Article  ADS  MATH  Google Scholar 

  62. J.W. Gadzuk, E.W. Plummer, Rev. Mod. Phys. 45, 487 (1973)

    Article  ADS  Google Scholar 

  63. D.Y. Zhong, G.Y. Zhang, S. Liu, T. Sakurai, E.G. Wang, Appl. Phys. Lett. 80, 506 (2002)

    Article  ADS  Google Scholar 

  64. X.Y. Xue, L.M. Li, H.C. Yu, Y.J. Chen, Y.G. Wang, T.H. Wang, Appl. Phys. Lett. 89, 043118 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yemin Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Hu, Z., Yu, L. et al. Field emission of comb-like chromium disilicide nanowires prepared by an in situ chloride-generated route. Appl. Phys. A 103, 67–72 (2011). https://doi.org/10.1007/s00339-011-6343-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6343-y

Keywords

Navigation