Skip to main content
Log in

Growth, structure, and cathodoluminescence of Dy-doped ZnO nanowires

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Dy-doped ZnO nanowires have been prepared using high-temperature and high-pressure pulsed-laser deposition. The morphology, structure, and composition of the as-prepared nanostructures are characterized by field emission scanning electron microscopy, X-ray diffraction, Raman scattering spectrometry, X-ray photoelectron spectrometry, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The alloying droplets are located at the top of the as-prepared Dy-doped ZnO nanowires, which means that the growth of the Dy-doped ZnO nanowires is a typical vapor-liquid-solid process. The luminescence properties of Dy-doped ZnO nanowires are characterized by cathodoluminescence spectra and photoluminescence spectra at low temperature (8 K). Two peaks at 481 and 583 nm, respectively, are identified to be from the doped Dy3+ ions in the CL spectra of Dy-doped ZnO nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, 353 (2003)

    Article  Google Scholar 

  2. Y.W. Heo, D.P. Norton, L.C. Tien, Y. Kwon, B.S. Kang, F. Ren, S.J. Pearton, J.R. LaRoche, Mater. Sci. Eng., R Rep. 47, 1 (2004)

    Article  Google Scholar 

  3. H.J. Lee, S.Y. Jeong, Appl. Phys. Lett. 85, 419 (2004)

    Article  ADS  Google Scholar 

  4. L. Li, L. Fang, X.M. Chen, J. Liu, F.F. Yang, Q.J. Li, G.B. Liu, S.J. Feng, Physica E 41, 169 (2008)

    Article  ADS  Google Scholar 

  5. P.X. Gao, Z.L. Wang, J. Phys. Chem. B 106, 12653 (2002)

    Article  Google Scholar 

  6. C. Ronning, P.X. Gao, Y. Ding, Z.L. Wang, Appl. Phys. Lett. 84, 783 (2004)

    Article  ADS  Google Scholar 

  7. Y.Q. Chang, D.B. Wang, X.H. Luo, X.Y. Xu, X.H. Chen, L. Li, C.P. Chen, R.M. Wang, J. Xu, D.P. Yu, Appl. Phys. Lett. 83, 4020 (2003)

    Article  ADS  Google Scholar 

  8. Y.H. Yang, Y. Feng, H.G. Zhu, G.W. Yang, J. Appl. Phys. 107, 053502 (2010)

    Article  ADS  Google Scholar 

  9. Y.H. Yang, N.S. Xu, G.W. Yang, Eur. Phys. J. Appl. Phys. 44, 241 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  10. R.N. Bhargave, D. Gallagher, A. Nurmikko, Phys. Rev. Lett. 72, 416 (1994)

    Article  ADS  Google Scholar 

  11. Y. Kanemitsu, H. Matsubara, C.W. White, Appl. Phys. Lett. 81, 535 (2002)

    Article  ADS  Google Scholar 

  12. W. Chen, J.O. Malm, V. Zwiller, Y. Huang, S. Liu, R. Wallenberg, J.O. Bovin, L. Samuelson, Phys. Rev. B 61, 11021 (2000)

    Article  ADS  Google Scholar 

  13. A.J. Steckl, J.H. Park, J.M. Zavada, Mater. Today 10, 20 (2007)

    Article  Google Scholar 

  14. J.M. Zavada, N. Nepal, J.Y. Lin, H.X. Jiang, E. Brown, U. Hommerich, J. Hite, G. Thaler, C.R. Abernathy, S.J. Pearton, Appl. Phys. Lett. 89, 152107 (2006)

    Article  ADS  Google Scholar 

  15. S. Shirata, R. Sasaki, T. Kataoka, Appl. Phys. Lett. 85, 2247 (2004)

    Article  ADS  Google Scholar 

  16. L. Yang, Y.H. Tang, A.P. Hu, L.D. Zhang, Physica B 403, 2230 (2008)

    Article  ADS  Google Scholar 

  17. G.S. Wu, Y.L. Zhuang, Z.Q. Lin, X.Y. Yuan, T. Xie, L.D. Zhang, Physica E 31, 5 (2006)

    Article  ADS  Google Scholar 

  18. J.M. Calleja, M. Cardona, Phys. Rev. B 16, 3753 (1977)

    Article  ADS  Google Scholar 

  19. B.R. Strohmeier, D.M. Hercules, J. Catal. 86, 266 (1984)

    Article  Google Scholar 

  20. V.I. Nefedov, D. Gati, B.F. Dzhurinskii, N.P. Sergushin, Y.V. Salyn, Zh. Neorg. Him. 20, 2307 (1975)

    Google Scholar 

  21. B.D. Paladia, W.C. Lang, P.R. Norris, L.M. Watson, P.J. Fabian, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 354, 269 (1977)

    Article  ADS  Google Scholar 

  22. C.J. Pan, C.W. Chen, J.Y. Chen, P.J. Huang, G.C. Chi, C.Y. Chang, F. Ren, S.J. Pearton, Appl. Surf. Sci. 256, 187 (2009)

    Article  ADS  Google Scholar 

  23. F. Gu, S.F. Wang, M.K. Lu, G.J. Zhou, D. Xu, D.R. Yuan, Langmuir 30, 3528 (2004)

    Article  Google Scholar 

  24. B.K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, U. Haboeck, A.V. Rodina, Phys. Status Solidi B 241, 231 (2004)

    Article  ADS  Google Scholar 

  25. E. Przezdziecka, E. Kaminska, K.P. Korona, E. Dynowska, W. Dobrowolski, R. Jakiela, L. Klopotowski, J. Kossut, Semicond. Sci. Technol. 22, 10 (2007)

    Article  ADS  Google Scholar 

  26. D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, G. Gantwell, Appl. Phys. Lett. 81, 1830 (2002)

    Article  ADS  Google Scholar 

  27. A. Travlos, N. Boukos, C. Chandrinou, H.S. Kwack, L.S. Dang, J. Appl. Phys. 106, 104307 (2009)

    Article  ADS  Google Scholar 

  28. S.L. Ji, L.L. Yin, G.D. Liu, J. Phys. Chem. C 113, 16439 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. W. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y.H., Zhu, H.G. & Yang, G.W. Growth, structure, and cathodoluminescence of Dy-doped ZnO nanowires. Appl. Phys. A 103, 73–79 (2011). https://doi.org/10.1007/s00339-011-6328-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6328-x

Keywords

Navigation