Sub-wavelength diffraction-free imaging with low-loss metal-dielectric multilayers

Abstract

We demonstrate numerically the diffraction-free propagation of sub-wavelength sized optical beams through simple elements built of metal-dielectric multilayers. The proposed metamaterial consists of silver and a high refractive index dielectric, and is designed using the effective medium theory as strongly anisotropic and impedance matched to air. Further it is characterised with the transfer matrix method, and investigated with FDTD. The diffraction-free behaviour is verified by the analysis of FWHM of PSF in the function of the number of periods. Small reflections, small attenuation, and reduced Fabry–Pérot resonances make it a flexible diffraction-free material for arbitrarily shaped optical planar elements with sizes of the order of one wavelength.

References

  1. 1.

    J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966–3969 (2000)

    ADS  Article  Google Scholar 

  2. 2.

    B. Wood, J.B. Pendry, D.P. Tsai, Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B 74, 115116 (2006)

    ADS  Article  Google Scholar 

  3. 3.

    M. Scalora, G. D’Aguanno, N. Mattiucci, M.J. Bloemer, D. Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M.G. Cappeddu, M. Fowler, J. Haus, Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks. Opt. Express 15, 508–523 (2007)

    ADS  Article  Google Scholar 

  4. 4.

    D. de Ceglia, M.A. Vincenti, M.G. Cappeddu, M. Centini, N. Akozbek, A. D’Orazio, J.W. Haus, M.J. Bloemer, M. Scalora, Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-IR ranges. Phys. Rev. A 77, 033848 (2008)

    ADS  Article  Google Scholar 

  5. 5.

    N. Mattiucci, G. D’Aguanno, M. Scalora, M.J. Bloemer, C. Sibilia, Transmission function properties for multi-layered structures: application to super-resolution. Opt. Express 17, 17517–17529 (2009)

    ADS  Article  Google Scholar 

  6. 6.

    X. Li, S. He, Y. Jin, Subwavelength focusing with a multilayered Fabry–Pérot structure at optical frequencies. Phys. Rev. B 75(4), 045103 (2007)

    ADS  Article  Google Scholar 

  7. 7.

    R. Kotynski, T. Stefaniuk, Comparison of imaging with sub-wavelength resolution in the canalization and resonant tunnelling regimes. J. Opt. A, Pure Appl. Opt. 11, 015001 (2009)

    ADS  Article  Google Scholar 

  8. 8.

    P.A. Belov, C. Simovski, P. Ikonen, Canalization of subwavelength images by electromagnetic crystals. Phys. Rev. B 71(19), 193105 (2005)

    ADS  Article  Google Scholar 

  9. 9.

    P.A. Belov, Y. Hao, Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime. Phys. Rev. B 73, 113110 (2006)

    ADS  Article  Google Scholar 

  10. 10.

    Q.M. Quan, S.L. Zhu, R.P. Wang, Refraction in the fixed direction at the surface of dielectric/silver superlattice. Phys. Lett. A 359, 547–549 (2006)

    ADS  MATH  Article  Google Scholar 

  11. 11.

    B. Saleh, M. Teich, Fundamentals of Photonics, 2nd edn. (Wiley, New York, 2007)

    Google Scholar 

  12. 12.

    J.W. Goodman, Introduction to Fourier Optics, 3rd edn. (Roberts, Greenwood Village, 2005)

    Google Scholar 

  13. 13.

    R. Kotynski, T. Stefaniuk, Multiscale analysis of subwavelength imaging with metal-dielectric multilayers. Opt. Lett. 35, 1133–1135 (2010)

    Article  Google Scholar 

  14. 14.

    L. Wu, S. He, L.F. Shen, Band structure for a one-dimensional photonic crystal containing left-handed materials. Phys. Rev. B 67, 235103 (2003)

    ADS  Article  Google Scholar 

  15. 15.

    J.J. Miret, C.J. Zapata-Rodriguez, Surface-assisted ultralocalization in nondiffracting beams (2010). arXiv:1001.3204v1

  16. 16.

    P. Johnson, R. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)

    ADS  Article  Google Scholar 

  17. 17.

    E. Palik (ed.), Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998)

    Google Scholar 

  18. 18.

    A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson, G. Burr, Improving accuracy by subpixel smoothing in FDTD. Opt. Lett. 31, 2972–2974 (2006)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rafał Kotyński.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Kotyński, R., Stefaniuk, T. & Pastuszczak, A. Sub-wavelength diffraction-free imaging with low-loss metal-dielectric multilayers. Appl. Phys. A 103, 905–909 (2011). https://doi.org/10.1007/s00339-011-6286-3

Download citation

Keywords

  • Point Spread Function
  • Impedance Match
  • Effective Medium Theory
  • Symmetric Composition
  • Local Dispersion Relation