Advertisement

Applied Physics A

, Volume 103, Issue 3, pp 905–909 | Cite as

Sub-wavelength diffraction-free imaging with low-loss metal-dielectric multilayers

  • Rafał Kotyński
  • Tomasz Stefaniuk
  • Anna Pastuszczak
Open Access
Article

Abstract

We demonstrate numerically the diffraction-free propagation of sub-wavelength sized optical beams through simple elements built of metal-dielectric multilayers. The proposed metamaterial consists of silver and a high refractive index dielectric, and is designed using the effective medium theory as strongly anisotropic and impedance matched to air. Further it is characterised with the transfer matrix method, and investigated with FDTD. The diffraction-free behaviour is verified by the analysis of FWHM of PSF in the function of the number of periods. Small reflections, small attenuation, and reduced Fabry–Pérot resonances make it a flexible diffraction-free material for arbitrarily shaped optical planar elements with sizes of the order of one wavelength.

Keywords

Point Spread Function Impedance Match Effective Medium Theory Symmetric Composition Local Dispersion Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966–3969 (2000) ADSCrossRefGoogle Scholar
  2. 2.
    B. Wood, J.B. Pendry, D.P. Tsai, Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B 74, 115116 (2006) ADSCrossRefGoogle Scholar
  3. 3.
    M. Scalora, G. D’Aguanno, N. Mattiucci, M.J. Bloemer, D. Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M.G. Cappeddu, M. Fowler, J. Haus, Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks. Opt. Express 15, 508–523 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    D. de Ceglia, M.A. Vincenti, M.G. Cappeddu, M. Centini, N. Akozbek, A. D’Orazio, J.W. Haus, M.J. Bloemer, M. Scalora, Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-IR ranges. Phys. Rev. A 77, 033848 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    N. Mattiucci, G. D’Aguanno, M. Scalora, M.J. Bloemer, C. Sibilia, Transmission function properties for multi-layered structures: application to super-resolution. Opt. Express 17, 17517–17529 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    X. Li, S. He, Y. Jin, Subwavelength focusing with a multilayered Fabry–Pérot structure at optical frequencies. Phys. Rev. B 75(4), 045103 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    R. Kotynski, T. Stefaniuk, Comparison of imaging with sub-wavelength resolution in the canalization and resonant tunnelling regimes. J. Opt. A, Pure Appl. Opt. 11, 015001 (2009) ADSCrossRefGoogle Scholar
  8. 8.
    P.A. Belov, C. Simovski, P. Ikonen, Canalization of subwavelength images by electromagnetic crystals. Phys. Rev. B 71(19), 193105 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    P.A. Belov, Y. Hao, Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime. Phys. Rev. B 73, 113110 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    Q.M. Quan, S.L. Zhu, R.P. Wang, Refraction in the fixed direction at the surface of dielectric/silver superlattice. Phys. Lett. A 359, 547–549 (2006) ADSzbMATHCrossRefGoogle Scholar
  11. 11.
    B. Saleh, M. Teich, Fundamentals of Photonics, 2nd edn. (Wiley, New York, 2007) Google Scholar
  12. 12.
    J.W. Goodman, Introduction to Fourier Optics, 3rd edn. (Roberts, Greenwood Village, 2005) Google Scholar
  13. 13.
    R. Kotynski, T. Stefaniuk, Multiscale analysis of subwavelength imaging with metal-dielectric multilayers. Opt. Lett. 35, 1133–1135 (2010) CrossRefGoogle Scholar
  14. 14.
    L. Wu, S. He, L.F. Shen, Band structure for a one-dimensional photonic crystal containing left-handed materials. Phys. Rev. B 67, 235103 (2003) ADSCrossRefGoogle Scholar
  15. 15.
    J.J. Miret, C.J. Zapata-Rodriguez, Surface-assisted ultralocalization in nondiffracting beams (2010). arXiv:1001.3204v1
  16. 16.
    P. Johnson, R. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972) ADSCrossRefGoogle Scholar
  17. 17.
    E. Palik (ed.), Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998) Google Scholar
  18. 18.
    A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson, G. Burr, Improving accuracy by subpixel smoothing in FDTD. Opt. Lett. 31, 2972–2974 (2006) ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Rafał Kotyński
    • 1
  • Tomasz Stefaniuk
    • 1
  • Anna Pastuszczak
    • 1
  1. 1.Faculty of PhysicsUniversity of WarsawWarsawPoland

Personalised recommendations