Single-layer metal nanolenses with tight foci in far-field

Abstract

In simulations we analyze performance of plasmonic nanolenses made of a single metal layer. We consider the nanolenses in two configurations. In the first, the nanolens is a free-standing silver layer with no hole on the optical axis and double-sided concentric corrugations. In the second, the nanolens has a set of slits instead of grooves. This necessitates integrating the annular metal elements with a dielectric matrix. We examine the following parameters of the nanolenses: film thickness, diameter of an on-axis stop, and lattice constant of slits or double-sided concentric grooves, as well as depth and width of grooves. Due to radially polarized illumination lenses have foci of full widths at half maxima (FWHMs) better than half a wavelength, though foci formed by propagating waves do not decrease beyond the diffraction limit. Due to proper geometry of slits or double-sided grooves lenses have focal lengths of the order of a few wavelengths. Transmission of light through lenses with double-sided narrow grooves reaches 30% while through ones with slits exceeds 80%.

References

  1. 1.

    S. Kawata, Y. Inouye, P. Verma, Nat. Photonics 3, 388 (2009)

    ADS  Article  Google Scholar 

  2. 2.

    R. Kotynski, T. Stefaniuk, J. Opt. A, Pure Appl. Opt. 11, 015001 (2009)

    ADS  Article  Google Scholar 

  3. 3.

    L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  4. 4.

    T.J. Antosiewicz, P. Wróbel, T. Szoplik, Opt. Express 17, 9191 (2009)

    ADS  Article  Google Scholar 

  5. 5.

    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    ADS  Article  Google Scholar 

  6. 6.

    D.O.S. Melville, R.J. Blaikie, C.R. Wolf, Appl. Phys. Lett. 84, 4403 (2004)

    ADS  Article  Google Scholar 

  7. 7.

    N. Fang, H. Lee, C. Sun, X. Zhang, Science 308, 534 (2005)

    ADS  Article  Google Scholar 

  8. 8.

    Z. Liu, J.M. Steele, W. Srituravanich, Y. Pikus, C. Sun, X. Zhang, Nano Lett. 5, 1726 (2005)

    ADS  Article  Google Scholar 

  9. 9.

    C.K. Chang, D.Z. Lin, C.S. Yeh, C.K. Lee, Y.C. Chang, M.W. Lin, J.T. Yeh, J.M. Liu, Appl. Phys. Lett. 90, 061113 (2007)

    ADS  Article  Google Scholar 

  10. 10.

    W. Srituravanich, L. Pan, Y. Wang, C. Sun, D.B. Bogy, X. Zhang, Nat. Nanotechnol. 3, 733 (2008)

    ADS  Article  Google Scholar 

  11. 11.

    P. Nagpal, N.C. Lindquist, S.H. Oh, D.J. Norris, Science 325, 594 (2009)

    ADS  Article  Google Scholar 

  12. 12.

    W. Chen, D.C. Abeysinghe, R.L. Nelson, Q. Zhan, Nano Lett. 9, 4320 (2009)

    ADS  Article  Google Scholar 

  13. 13.

    N. Bonod, S. Enoch, L. Li, E. Popov, M. Neviere, Opt. Express 11, 482 (2003)

    ADS  Article  Google Scholar 

  14. 14.

    H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, L. Martin-Moreno, F.J. Garcia-Vidal, T.W. Ebbesen, Science 297, 820 (2002)

    ADS  Article  Google Scholar 

  15. 15.

    F.I. Baida, D. Van Labeke, B. Guizal, Appl. Opt. 42, 6811 (2003)

    ADS  Article  Google Scholar 

  16. 16.

    H. Shi, C. Wang, C. Du, X. Luo, X. Dong, H. Gao, Opt. Express 13, 6815 (2005)

    ADS  Article  Google Scholar 

  17. 17.

    D.Z. Lin, C.H. Chen, C.K. Chang, T.D. Cheng, C.S. Yeh, C.K. Lee, Appl. Phys. Lett. 92, 233106 (2008)

    ADS  Article  Google Scholar 

  18. 18.

    J. Wang, J. Zhang, X. Wu, H. Luo, Q. Gong, Appl. Phys. Lett. 94, 081116 (2009)

    ADS  Article  Google Scholar 

  19. 19.

    Q. Zhan, Adv. Opt. Photon. 1, 1 (2009)

    Article  Google Scholar 

  20. 20.

    P. Wrobel, J. Pniewski, T.J. Antosiewicz, T. Szoplik, Phys. Rev. Lett. 102, 183902 (2009)

    ADS  Article  Google Scholar 

  21. 21.

    A.F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson, Comput. Phys. Commun. 181, 687 (2010)

    ADS  MATH  Article  Google Scholar 

  22. 22.

    T.J. Antosiewicz, T. Szoplik, Opt. Express 15, 7845 (2007)

    ADS  Article  Google Scholar 

  23. 23.

    W.C. Tan, T.W. Preist, R.J. Sambles, Phys. Rev. B 62, 11134 (2000)

    ADS  Article  Google Scholar 

  24. 24.

    J.A. Porto, F.J. Garcia-Vidal, J.B. Pendry, Phys. Rev. Lett. 83, 2845 (1999)

    ADS  Article  Google Scholar 

  25. 25.

    S. Astilean, Ph. Lalanne, M. Palamaru, Opt. Commun. 175, 265 (2000)

    ADS  Article  Google Scholar 

  26. 26.

    Y. Wang, W. Srituravanich, C. Sun, X. Zhang, Nano Lett. 8, 3041 (2008)

    ADS  Article  Google Scholar 

  27. 27.

    R.A. Natalin, J. Landman, Nat. Rev. Urol. 6, 622 (2009)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Piotr Wróbel.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Wróbel, P., Antosiewicz, T.J., Pniewski, J. et al. Single-layer metal nanolenses with tight foci in far-field. Appl. Phys. A 103, 821–825 (2011). https://doi.org/10.1007/s00339-010-6221-z

Download citation

Keywords

  • Resonant Tunneling
  • Lenslet Array
  • Tight Focus
  • Electric Energy Density
  • Momentum Match