Advertisement

Applied Physics A

, Volume 103, Issue 3, pp 821–825 | Cite as

Single-layer metal nanolenses with tight foci in far-field

  • Piotr Wróbel
  • Tomasz J. Antosiewicz
  • Jacek Pniewski
  • Tomasz Szoplik
Open Access
Article

Abstract

In simulations we analyze performance of plasmonic nanolenses made of a single metal layer. We consider the nanolenses in two configurations. In the first, the nanolens is a free-standing silver layer with no hole on the optical axis and double-sided concentric corrugations. In the second, the nanolens has a set of slits instead of grooves. This necessitates integrating the annular metal elements with a dielectric matrix. We examine the following parameters of the nanolenses: film thickness, diameter of an on-axis stop, and lattice constant of slits or double-sided concentric grooves, as well as depth and width of grooves. Due to radially polarized illumination lenses have foci of full widths at half maxima (FWHMs) better than half a wavelength, though foci formed by propagating waves do not decrease beyond the diffraction limit. Due to proper geometry of slits or double-sided grooves lenses have focal lengths of the order of a few wavelengths. Transmission of light through lenses with double-sided narrow grooves reaches 30% while through ones with slits exceeds 80%.

Keywords

Resonant Tunneling Lenslet Array Tight Focus Electric Energy Density Momentum Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Kawata, Y. Inouye, P. Verma, Nat. Photonics 3, 388 (2009) ADSCrossRefGoogle Scholar
  2. 2.
    R. Kotynski, T. Stefaniuk, J. Opt. A, Pure Appl. Opt. 11, 015001 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2007) Google Scholar
  4. 4.
    T.J. Antosiewicz, P. Wróbel, T. Szoplik, Opt. Express 17, 9191 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000) ADSCrossRefGoogle Scholar
  6. 6.
    D.O.S. Melville, R.J. Blaikie, C.R. Wolf, Appl. Phys. Lett. 84, 4403 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    N. Fang, H. Lee, C. Sun, X. Zhang, Science 308, 534 (2005) ADSCrossRefGoogle Scholar
  8. 8.
    Z. Liu, J.M. Steele, W. Srituravanich, Y. Pikus, C. Sun, X. Zhang, Nano Lett. 5, 1726 (2005) ADSCrossRefGoogle Scholar
  9. 9.
    C.K. Chang, D.Z. Lin, C.S. Yeh, C.K. Lee, Y.C. Chang, M.W. Lin, J.T. Yeh, J.M. Liu, Appl. Phys. Lett. 90, 061113 (2007) ADSCrossRefGoogle Scholar
  10. 10.
    W. Srituravanich, L. Pan, Y. Wang, C. Sun, D.B. Bogy, X. Zhang, Nat. Nanotechnol. 3, 733 (2008) ADSCrossRefGoogle Scholar
  11. 11.
    P. Nagpal, N.C. Lindquist, S.H. Oh, D.J. Norris, Science 325, 594 (2009) ADSCrossRefGoogle Scholar
  12. 12.
    W. Chen, D.C. Abeysinghe, R.L. Nelson, Q. Zhan, Nano Lett. 9, 4320 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    N. Bonod, S. Enoch, L. Li, E. Popov, M. Neviere, Opt. Express 11, 482 (2003) ADSCrossRefGoogle Scholar
  14. 14.
    H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, L. Martin-Moreno, F.J. Garcia-Vidal, T.W. Ebbesen, Science 297, 820 (2002) ADSCrossRefGoogle Scholar
  15. 15.
    F.I. Baida, D. Van Labeke, B. Guizal, Appl. Opt. 42, 6811 (2003) ADSCrossRefGoogle Scholar
  16. 16.
    H. Shi, C. Wang, C. Du, X. Luo, X. Dong, H. Gao, Opt. Express 13, 6815 (2005) ADSCrossRefGoogle Scholar
  17. 17.
    D.Z. Lin, C.H. Chen, C.K. Chang, T.D. Cheng, C.S. Yeh, C.K. Lee, Appl. Phys. Lett. 92, 233106 (2008) ADSCrossRefGoogle Scholar
  18. 18.
    J. Wang, J. Zhang, X. Wu, H. Luo, Q. Gong, Appl. Phys. Lett. 94, 081116 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    Q. Zhan, Adv. Opt. Photon. 1, 1 (2009) CrossRefGoogle Scholar
  20. 20.
    P. Wrobel, J. Pniewski, T.J. Antosiewicz, T. Szoplik, Phys. Rev. Lett. 102, 183902 (2009) ADSCrossRefGoogle Scholar
  21. 21.
    A.F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson, Comput. Phys. Commun. 181, 687 (2010) ADSzbMATHCrossRefGoogle Scholar
  22. 22.
    T.J. Antosiewicz, T. Szoplik, Opt. Express 15, 7845 (2007) ADSCrossRefGoogle Scholar
  23. 23.
    W.C. Tan, T.W. Preist, R.J. Sambles, Phys. Rev. B 62, 11134 (2000) ADSCrossRefGoogle Scholar
  24. 24.
    J.A. Porto, F.J. Garcia-Vidal, J.B. Pendry, Phys. Rev. Lett. 83, 2845 (1999) ADSCrossRefGoogle Scholar
  25. 25.
    S. Astilean, Ph. Lalanne, M. Palamaru, Opt. Commun. 175, 265 (2000) ADSCrossRefGoogle Scholar
  26. 26.
    Y. Wang, W. Srituravanich, C. Sun, X. Zhang, Nano Lett. 8, 3041 (2008) ADSCrossRefGoogle Scholar
  27. 27.
    R.A. Natalin, J. Landman, Nat. Rev. Urol. 6, 622 (2009) CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Piotr Wróbel
    • 1
  • Tomasz J. Antosiewicz
    • 2
  • Jacek Pniewski
    • 1
  • Tomasz Szoplik
    • 1
  1. 1.Faculty of PhysicsUniversity of WarsawWarszawaPoland
  2. 2.Interdisciplinary Centre for Mathematical and Computational ModellingUniversity of WarsawWarsawPoland

Personalised recommendations