Skip to main content

Advertisement

Log in

Plasmonic Dicke effect

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We study cooperative emission by an ensemble of emitters, such as fluorescing molecules or semiconductor quantum dots, near a metal nanoparticle. The primary mechanism of cooperative emission is resonant energy transfer between emitters and plasmons rather than Dicke radiative coupling between emitters. The emission is dominated by three superradiant states with the same quantum yield as a single emitter, leading to a drastic reduction of ensemble radiated energy down to just thrice of that by a single emitter, the remaining energy being dissipated in the metal through subradiant states. We perform numerical calculations of system eigenstates and find that the plasmonic Dicke effect interactions affect is not impacted by the interactions between emitters or non-radiative losses in the metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.H. Dicke, Phys. Rev. 93, 99 (1954)

    Article  ADS  MATH  Google Scholar 

  2. A.V. Andreev, V.I. Emel’yanov, Y.A. Il’inskii, Cooperative Effects in Optics (IOP Publishing, Bristol, 1993)

    Google Scholar 

  3. V.N. Pustovit, T.V. Shahbazyan, Phys. Rev. Lett. 102, 077401 (2009)

    Article  ADS  Google Scholar 

  4. R.R. Chance, A. Prock, R. Silbey, Adv. Chem. Phys. 37, 1 (1978)

    Article  Google Scholar 

  5. M. Moskovits, Rev. Mod. Phys. 57, 783 (1985)

    Article  ADS  Google Scholar 

  6. E. Dulkeith, A.C. Morteani, T. Niedereichholz, T.A. Klar, J. Feldmann, S.A. Levi, F.C.J.M. van Veggel, D.N. Reinhoudt, M. Moller, D.I. Gittins, Phys. Rev. Lett. 89, 203002 (2002)

    Article  ADS  Google Scholar 

  7. E. Dulkeith, M. Ringler, T.A. Klar, J. Feldmann, A.M. Javier, W.J. Parak, Nano Lett. 5, 585 (2005)

    Article  ADS  Google Scholar 

  8. P. Anger, P. Bharadwaj, L. Novotny, Phys. Rev. Lett. 96, 113002 (2006)

    Article  ADS  Google Scholar 

  9. S. Kuhn, U. Hakanson, L. Rogobete, V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006)

    Article  ADS  Google Scholar 

  10. F. Tam, G.P. Goodrich, B.R. Johnson, N.J. Halas, Nano Lett. 7, 496 (2007)

    Article  ADS  Google Scholar 

  11. J. Gersten, A. Nitzan, J. Chem. Phys. 75, 1139 (1981)

    Article  ADS  Google Scholar 

  12. J. Seelig, K. Leslie, A. Renn, S. Kluhn, V. Jacobsen, M. van de Corput, C. Wyman, V. Sandoghdar, Nano Lett. 7, 685 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Shahbazyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahbazyan, T.V., Pustovit, V.N. Plasmonic Dicke effect. Appl. Phys. A 103, 755–758 (2011). https://doi.org/10.1007/s00339-010-6208-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-6208-9

Keywords

Navigation