Skip to main content

Advertisement

Log in

Localized radiative energy transfer from a plasmonic bow-tie nano-antenna to a magnetic thin film stack

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Localized radiative energy transfer from a near-field emitter to a magnetic thin film structure is investigated. A magnetic thin film stack is placed in the near-field of the plasmonic nano-antenna to utilize the evanescent mode coupling between the nano-antenna and magnetic thin film stack. A bow-tie nano-optical antenna is excited with a tightly focused beam of light to improve near-field radiative energy transfer from the antenna to the magnetic thin film structure. A tightly focused incident optical beam with a wide angular spectrum is formulated using Richards–Wolf vector field equations. Radiative energy transfer is investigated using a frequency domain 3D finite element method solution of Maxwell’s equations. Localized radiative energy transfer between the near-field emitter and the magnetic thin film structure is quantified for a given optical laser power at various distances between the near-field emitter and magnetic thin film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.A. Challener, C. Peng, A.V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N.J. Gokemeijer, Y.-T. Hsia, G. Ju, R.E. Rottmayer, M.A. Seigler, E.C. Gage, Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nat. Photonics 3, 220–224 (2009)

    Article  ADS  Google Scholar 

  2. T. McDaniel, W. Challener, K. Sendur, Issues in heat assisted perpendicular recording. IEEE Trans. Magn. 39, 1972–1979 (2003)

    Article  ADS  Google Scholar 

  3. K. Sendur, C. Peng, W. Challener, Near-field radiation from a ridge waveguide transducer in the vicinity of a solid immersion lens. Phys. Rev. Lett. 94, 043901 (2005)

    Article  ADS  Google Scholar 

  4. A. Narayanaswamy, G. Chen, Surface modes for near field thermophotovoltaics. Appl. Phys. Lett. 82, 3544–3546 (2003)

    Article  ADS  Google Scholar 

  5. R.S. DiMatteo, P. Greiff, S.L. Finberg, K. Young-Waithe, H.K.H. Choy, M.M. Masaki, C.G. Fonstad, Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap. Appl. Phys. Lett. 79, 1894 (2001)

    Article  ADS  Google Scholar 

  6. Y.-F. Lu, B. Hu, Z.-H. Mai, W.-J. Wang, W.-K. Chim, T.-C. Chong, Laser-scanning probe microscope based nanoprocessing of electronics materials. Jpn. J. Appl. Phys. 40, 4395–4398 (2001)

    Article  ADS  Google Scholar 

  7. A. Chimmalgi, C.P. Grigoropoulos, K. Komvopoulos, Surface nanostructuring by nano-/femtosecond laser-assisted scanning force microscopy. J. Appl. Phys. 97, 104319 (2005)

    Article  ADS  Google Scholar 

  8. M. Francoeur, M.P. Menguc, Role of the fluctuational electrodynamics theory in near-field radiative heat transfer. J. Quant. Spectrosc. Radiat. Transf. 109, 280–293 (2008)

    Article  ADS  Google Scholar 

  9. M. Francoeur, M.P. Menguc, R. Vaillon, Near-field radiative heat transfer enhancement via surface phonon-polaritons coupling in thin films. Appl. Phys. Lett. 93, 043109 (2008)

    Article  ADS  Google Scholar 

  10. S. Shen, A. Narayanaswamy, G. Chen, Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Lett. 9, 2909–2913 (2009)

    Article  ADS  Google Scholar 

  11. E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier, J.-J. Greffet, Radiative heat transfer at the nanoscale. Nat. Photonics 3, 514–517 (2009)

    Article  ADS  Google Scholar 

  12. P. Ben-Abdallah, K. Joulain, J. Drevillon, G. Domingues, Tailoring the local density of states of nonradiative field at the surface of nanolayered materials. Appl. Phys. Lett. 94, 153117 (2009)

    Article  ADS  Google Scholar 

  13. M. Francoeur, M.P. Menguc, R. Vaillon, Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method. J. Quant. Spectrosc. Radiat. Transf. 110, 2002–2018 (2009)

    Article  ADS  Google Scholar 

  14. M. Francoeur, M.P. Menguc, R. Vaillon, Local density of electromagnetic states within a nanometric gap formed between two thin films supporting surface phonon polaritons. J. Appl. Phys. 107, 034313 (2010)

    Article  ADS  Google Scholar 

  15. M. Francoeur, M.P. Menguc, R. Vaillon, Spectral tuning of near-field radiative heat flux between two thin silicon carbide films. J. Phys. D, Appl. Phys. 43, 075501 (2010)

    ADS  Google Scholar 

  16. E.A. Hawes, J.T. Hastings, C. Crofcheck, M.P. Menguc, Spatial selective melting and evaporation of nanosized gold particles. Opt. Lett. 33, 1383–1385 (2008)

    Article  ADS  Google Scholar 

  17. A. Downes, D. Salter, A. Elfick, Heating effects in tip-enhanced optical microscopy. Opt. Express 14, 5216–5222 (2006)

    Article  ADS  Google Scholar 

  18. R.D. Grober, R.J. Schoelkopf, D.E. Prober, Optical antenna: towards a unit efficiency near-field optical probe. Appl. Phys. Lett. 70, 1354–1356 (1997)

    Article  ADS  Google Scholar 

  19. K. Sendur, W. Challener, Near-field radiation of bow-tie antennas and apertures at optical frequencies. J. Microsc. 210, 279–283 (2003)

    Article  MathSciNet  Google Scholar 

  20. L. Novotny, Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 98, 266802 (2007)

    Article  ADS  Google Scholar 

  21. K.B. Crozier, A. Sundaramurthy, G.S. Kino, C.F. Quate, Optical antennas: resonators for local field enhancement. J. Appl. Phys. 94, 4632–4642 (2003)

    Article  ADS  Google Scholar 

  22. P. Muhlschlegel, H.-J. Eisler, O.J.F. Martin, B. Hecht, D.W. Pohl, Resonant optical antennas. Science 308, 1607–1609 (2005)

    Article  ADS  Google Scholar 

  23. K. Sendur, E. Baran, Near-field optical power transmission of dipole nano-antennas. Appl. Phys. B 96, 325–335 (2009)

    Article  ADS  Google Scholar 

  24. E. Wolf, Electromagnetic diffraction in optical systems I. An integral representation of the image field. Proc. R. Soc. Lond. A 253, 349–357 (1959)

    Article  ADS  MATH  Google Scholar 

  25. B. Richards, E. Wolf, Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system. Proc. R. Soc. Lond. A 253, 358–379 (1959)

    Article  ADS  MATH  Google Scholar 

  26. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998)

    Google Scholar 

  27. C.A. Balanis, Advanced Engineering Electromagnetics (Wiley, New York, 1989)

    Google Scholar 

  28. D.K. Cheng, Field and Wave Electromagnetics (Addison-Wesley, New York, 1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sendur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sendur, K., Kosar, A. & Menguc, M.P. Localized radiative energy transfer from a plasmonic bow-tie nano-antenna to a magnetic thin film stack. Appl. Phys. A 103, 703–707 (2011). https://doi.org/10.1007/s00339-010-6204-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-6204-0

Keywords

Navigation