Skip to main content
Log in

Tunable transmission and enhanced emission in ordered metallic nanostructures having varying channel shape

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Extraordinary transmission spectra for one-dimensional (1D) gratings and two-dimensional (2D) metallic hole arrays change with the hole channel shape. In this paper, a converging-diverging channel (CDC) design was introduced. The transmission spectra corresponding to CDC-embedded nanostructures of 1D grating, circular and rectangular holes (2D hole arrays) are analyzed using three-dimensional (3D) finite-element method. Tuning of optical transmission by changing the CDC structure has been investigated. In addition, a cavity composed of a CDC metallic grating and a 1D photonic crystal (PhC) can lead to an enhanced emission. Large coherence length of the emission can be achieved by exploiting coherent properties of surface waves in grating and PhC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.A. Bethe, Theory of diffraction by small holes. Phys. Rev. 66, 163–182 (1944)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)

    Article  ADS  Google Scholar 

  3. F.J. Garcia-Vidal, L. Martin-Moreno, Transmission and focusing of light in one-dimensional periodically nanostructured metals. Phys. Rev. B 66 (2002)

  4. H.J. Lezec, T. Thio, Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays. Opt. Express 12, 3629–3651 (2004)

    Article  ADS  Google Scholar 

  5. Q. Cao, P. Lalanne, Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. Phys. Rev. Lett. 88 (2002)

  6. C. Genet, T.W. Ebbesen, Light in tiny holes. Nature 445, 39–46 (2007)

    Article  ADS  Google Scholar 

  7. J.A. Porto, F.J. Garcia-Vidal, J.B. Pendry, Transmission resonances on metallic gratings with very narrow slits. Phys. Rev. Lett. 83, 2845–2848 (1999)

    Article  ADS  Google Scholar 

  8. R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leathem, K.L. Kavanagh, Strong polarization in the optical transmission through elliptical nanohole arrays. Phys. Rev. Lett. 92, 037401 (2004)

    Article  ADS  Google Scholar 

  9. K.J. Klein Koerkamp, S. Enoch, F.B. Segerink, N.F. van Hulst, L. Kuipers, Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. Phys. Rev. Lett. 92, 183901 (2004)

    Article  ADS  Google Scholar 

  10. J.A. Matteo, D.P. Fromm, Y. Yue, P.J. Schuck, W.E. Moerner, L. Hesselink, Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures. Appl. Phys. Lett. 85, 648 (2004)

    Article  ADS  Google Scholar 

  11. X.L. Shi, L. Hesselink, R.L. Thornton, Ultrahigh light transmission through a C-shaped nanoaperture. Opt. Lett. 28, 1320 (2003)

    Article  ADS  Google Scholar 

  12. Y.H. Ye, D.Y. Jeong, Q.M. Zhang, Fabrication of strain tunable infrared frequency selective surfaces on electrostrictive poly(vinylidene fluoride–trifluoroethylene) copolymer films using a stencil mask method. Appl. Phys. Lett. 85, 654 (2004)

    Article  ADS  Google Scholar 

  13. W. Fan, S. Zhang, B. Minhas, K.J. Malloy, S.R.J. Brueck, Enhanced infrared transmission through subwavelength coaxial metallic arrays. Phys. Rev. Lett. 94, 033902 (2005)

    Article  ADS  Google Scholar 

  14. R. Carminati, J.J. Greffet, Near-field effects in spatial coherence of thermal sources. Phys. Rev. Lett. 82, 1660–1663 (1999)

    Article  ADS  Google Scholar 

  15. C. Henkel, K. Joulain, R. Carminati, J.J. Greffet, Spatial coherence of thermal near fields. Opt. Commun. 186, 57–67 (2000)

    Article  ADS  Google Scholar 

  16. A.V. Shchegrov, K. Joulain, R. Carminati, J.J. Greffet, Near-field spectral effects due to electromagnetic surface excitations. Phys. Rev. Lett. 85, 1548–1551 (2000)

    Article  ADS  Google Scholar 

  17. P.J. Hesketh, J.N. Zemel, B. Gebhart, Organ pipe radiant modes of periodic micromachined silicon surfaces. Nature 324, 549–551 (1986)

    Article  ADS  Google Scholar 

  18. E.A. Vinogradov, G.N. Zhizhin, A.G. Malshukov, V.I. Yudson, Thermostimulated polariton emission of zinc selenide films on metal-substrate. Solid State Commun. 23, 915–921 (1977)

    Article  ADS  Google Scholar 

  19. M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, W. Knoll, Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons. Opt. Commun. 168, 117–122 (1999)

    Article  ADS  Google Scholar 

  20. J.J. Greffet, R. Carminati, K. Joulain, J.P. Mulet, S.P. Mainguy, Y. Chen, Coherent emission of light by thermal sources. Nature 416, 61–64 (2002)

    Article  ADS  Google Scholar 

  21. P. Ben-Abdallah, Thermal antenna behavior for thin-film structures. J. Opt. Soc. Am. A 21, 1368–1371 (2004)

    Article  ADS  Google Scholar 

  22. E.D. Palik (ed.), Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985)

    Google Scholar 

  23. D.R. Lide, Handbook of Chemistry and Physics, vol. 58 (CRC Press, Cleveland, 1992)

    Google Scholar 

  24. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985)

    Google Scholar 

  25. COMSOL 3.2a Reference Manual, version 3.2 (Comsol AB, 2005)

  26. A. Lavrinenko, P.I. Borel, L.H. Frandsen, M. Thorhauge, A. Harpoth, M. Kristensen, T. Niemi, H.M.H. Chong, Comprehensive FDTD modelling of photonic crystal waveguide components. Opt. Express 12, 234–248 (2004)

    Article  ADS  Google Scholar 

  27. A. Battula, S.C. Chen, Extraordinary transmission in a narrow energy band for metallic gratings with converging-diverging channels. Appl. Phys. Lett. 89, 131113 (2006)

    Article  ADS  Google Scholar 

  28. J.J. Greffet, M. Nieto-Vesperinas, Field theory for generalized bidirectional reflectivity: derivation of Helmholtz’s reciprocity principle and Kirchhoff’s law. J. Opt. Soc. Am. A 15, 2735–2744 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  29. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)

    MATH  Google Scholar 

  30. Y. Xie, A.R. Zakharian, J.V. Moloney, M. Mansuripur, Transmission of light through slit apertures in metallic films. Opt. Express 12, 6106–6121 (2004)

    Article  ADS  Google Scholar 

  31. J. LeGall, M. Olivier, J.J. Greffet, Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton. Phys. Rev. B 55, 10105–10114 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yalin Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y. Tunable transmission and enhanced emission in ordered metallic nanostructures having varying channel shape. Appl. Phys. A 103, 597–605 (2011). https://doi.org/10.1007/s00339-010-6191-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-6191-1

Keywords

Navigation